A fluorescence probe based on Tb^{3+}/Cu^{2+} co-functionalized MOFs to urinary

sarcosine detection

Nana Sun and Bing Yan*

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.

E-mail: byan@tongji.edu.cn.

Figure S1 The procedures to synthesize MOF-1 with hydrothermal method and Tb³⁺@MOF-1 based on PSM method.

Figure S2 Thermal gravimetric analysis of MOF-1 (black line), Tb³⁺@MOF-1 (red line) and Cu²⁺/Tb³⁺@MOF-1 (dark blue line).

Figure S3 The 3D structure composition of MOF-1 with the free uncoordinated carboxyl group.¹

Figure S4 FT-IR spectra of MOF-1 and Tb³⁺@MOF-1. The two absorption bands appearing at ~1723 cm⁻¹ and 1595 cm⁻¹ are assigned to the non-coordinated carboxyl group and asymmetric and symmetric stretching vibrations of C=O, respectively.

Figure S5 The excitation spectrum (black line) and emission spectrum (red line) of the ligand H₄btec.

Figure S6 (a) The fluorescence responses of Cu^{2+}/Tb^{3+} @MOF-1 towards different metal aqueous solutions and (b) the corresponding intensity of ${}^{5}D_{4} \rightarrow {}^{7}F_{5}$.

Figure S7 PXRD patterns of Cu²⁺/Tb³⁺@MOF-1 immersed in water at different times.

Figure S8 PXRD patterns of $Cu^{2+}/Tb^{3+}@MOF-1$ after immersed in aqueous solutions with a series of different pH values (4.0-8.0).

Figure S9 the fluorescence responses of $Tb^{3+}@MOF-1$ in the presence of sarcosine (blue line) and in the absence of sarcosine (red line) as well as the responses of $Cu^{2+}/Tb^{3+}@MOF-1$ in the aqueous solution (black line) and upon addition of sarcosine (pink line).

Figure S10 The UV-Vis spectrum of Cu²⁺ aqueous solution (0.01 M) and mixed solution of Cu²⁺ and sarcosine.

Fig. S11 the solid-state spectra of unmodified and modified MOFs before and after sarcosine absorption.

Figure S12 the comparison of emission spectrum of $Fe^{3+}/Tb^{3+}@MOF-1$ in the presence of sarcosine and emission spectrum of $Tb^{3+}@MOF-1$.

Fig S13 the fluorescence responses of $Cu^{2+}/Tb^{3+}@MOF-1$ towards different kinds of amino acid aqueous solutions.

Linear Equation: $Y = -5.82 \times 10^{-4} X + 0.93$

R = 0.989

 $S = 5.82 \times 10^{-4} M^{-1}$ $S_{b} = \sqrt{\frac{\sum (F_{0} - F_{1})^{2}}{N - 1}} = 4.46 \times 10^{-8} \qquad (N=20)$

 $LOD = 3S_b / S = 0.23 \text{ mM}$

Figure S15 the luminescence intensity of Cu^{2+}/Tb^{3+} @MOF-1 at 543 nm after four loops.

Figure S16 The fluorescence responses of $Cu^{2+}/Tb^{3+}@MOF-1$ towards the aqueous solutions of sarcosine with different pH.

Table S2 The ICP data for Ga^{3+} , Tb^{3+} and Cu^{2+} in Cu^{2+}/Tb^{3+} @MOF-1.	

Samples	Ga/Eu/Cu mass ratio	Ga/Eu/Cu molar ratio
Cu ²⁺ /Tb ³⁺ @MOF-1	14.7:4.9:3.4	6.64:1:0.68

Weight / %

37.43

44.59

13.48

2.18

2.32

Atomic / %

50.81

45.45

3.15

0.24

0.35

Table S3 Luminescence lifetimes (τ) of Cu²⁺/Tb³⁺@MOF-1 upon addition of different urinary components.

Table 53 Luminescence lifetimes (t) of Cu ²⁺ /Tb ³⁺ @MOF-1 upon addition of different urinary components.				
Sample(Cu ²⁺ /Tb ³⁺ @MOF-1)	Lifetime (τ) / μs			

Table S1 EDS element analysis of Cu²⁺/Tb³⁺@MOF-1.

С

0

Ga

Тb

Cu

Elements

Materials

Cu²⁺/Tb³⁺@MOF-1

Tb ³⁺ @MOF-1	585
H ₂ O	209
Sarcosine	577
Cre	272
Urea	207
UA	206
NaCl	189
KCl	191
NH4Cl	186
Na ₃ PO ₄	145
Cretine	215

Reference

1. L. Thierry, M. Herve, H. Mohamed, T. Francis, F. Gerard, *Solid State Sci.*, 2005, **7**, 603.