

Supporting Information for

Molecular Profiling of Single Axon and Dendrite in Living Neurons using Electrosyringe-assisted
Electrospray Mass Spectrometry

Mingchen Xu, Rongrong Pan, Yue Zhu, Dechen Jiang* and Hong-Yuan Chen*

Figure S1. The fluorescent image of nano-capillary immersed in 100 mM NH₄HCO₃ solution with fluorescein for 60 s without the application of negative voltage. The contrast was adjusted for better visualization of weak fluorescence at capillary wall.

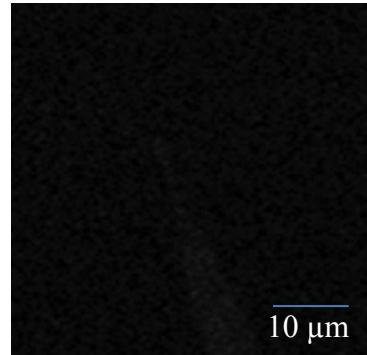


Figure 2. The simulation of the fluorescein distribution in nano-capillary during the electrochemical loading for 60 s using the diffusion module in Comsol software . (A) the simulation model: the diffusion coefficient of fluorescein is set as 10^{-6} cm²/s; the influx of fluorescein at the orifice of capillary is set as 10^{-19} mole (100 μ M, 1 fL); the boundary condition of all the other interfaces is set as the insulation; (B) the simulated concentration of fluorescein in nano-capillary; a small region with high concentration is observed at the tip associated with a diluted region across the capillary.

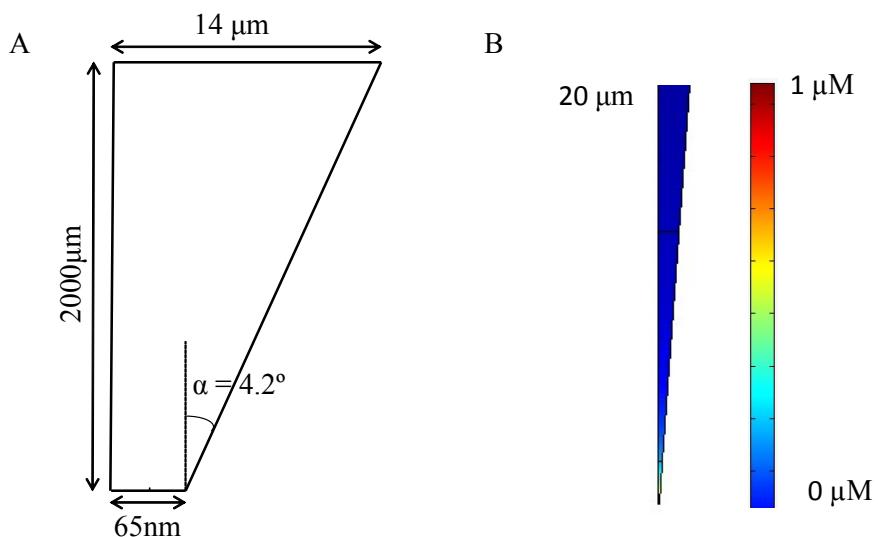


Figure S3. The integrated peak intensity of sucrose with (A) the application voltage for 60 s; (B) application time with the voltage of -3 V. The capillary used here had the tip opening of ~ 130 nm. The error bar presented the standard deviation from three independent measurements.

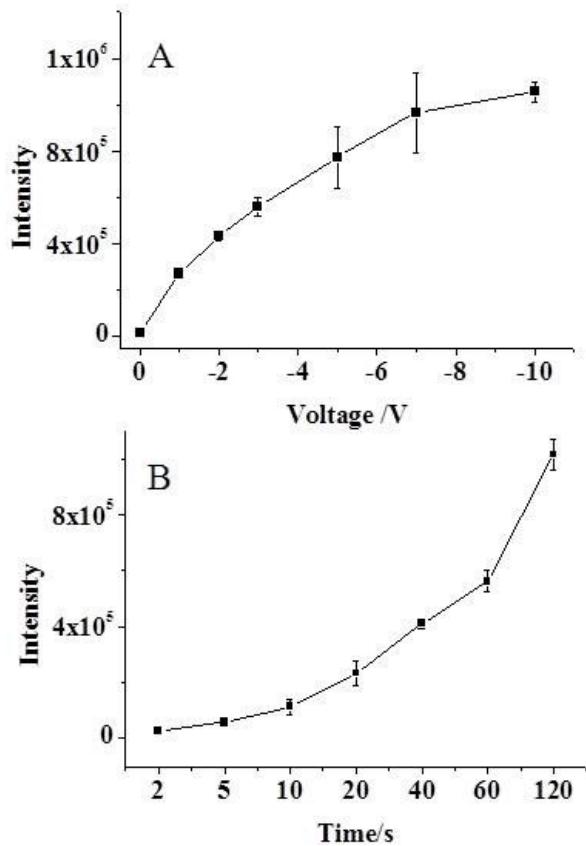


Figure S4. The mass spectrum of the electrosprayed solution from the capillary without the application of negative voltage at the metal wire for the electrochemical ingestion. The capillary used here had the tip opening of \sim 130 nm. The solution was 100 mM NH_4HCO_3 with 1 mM Et_4NHSO_4 , $(\text{CH}_2)_6\text{N}_4$, glucose, sucrose and ascorbic acid.

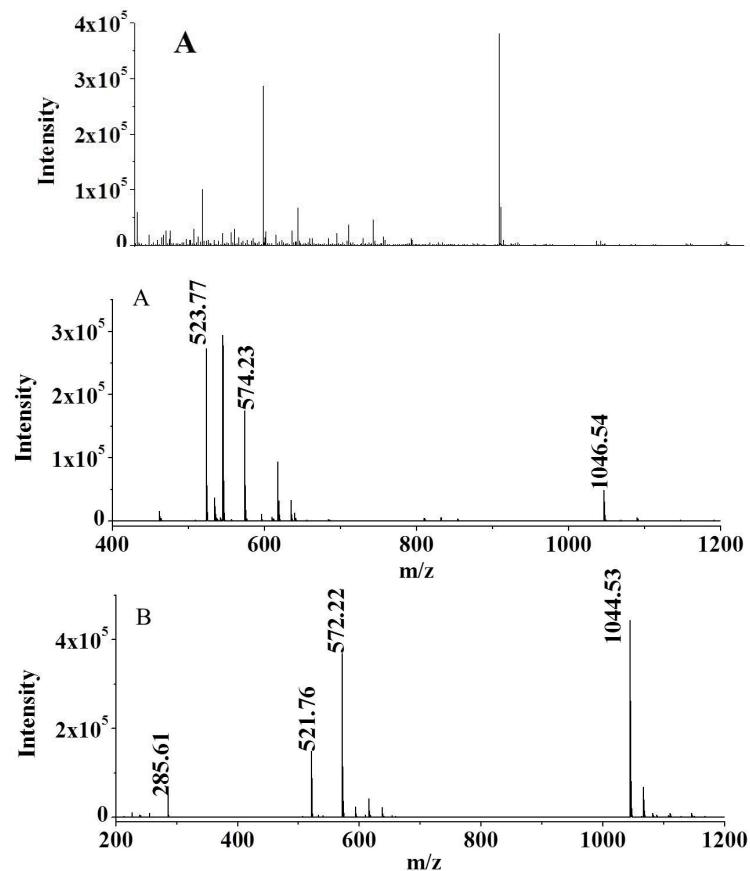


Figure S5. The mass spectrum of 100 mM NH_4HCO_3 with (A, B) 1 mM met-enkephalin and Angiotensin II loaded into the nano-capillary assisted by electrosyringe. (A) positive mode; (B) negative mode. The substance identification was shown in Table S1 of the Supporting Information.

Figure S6. (A) The intensity of glucose in mass spectrums using nano-capillary (black) and micro-capillary (red). The solutions with different concentration of glucose were manually filled into the capillary and electrosprayed. (B) the intensity of glucose in mass spectrum using nano-capillary. The solution with 1 mM glucose was electrochemically loaded into the nano-capillary by the application of -3 V for different time. The intensity labelled with light magenta was collected from the solution with 1 mM glucose directly filled in the nano-capillary. The error bar presented the standard

deviation from three independent measurements.

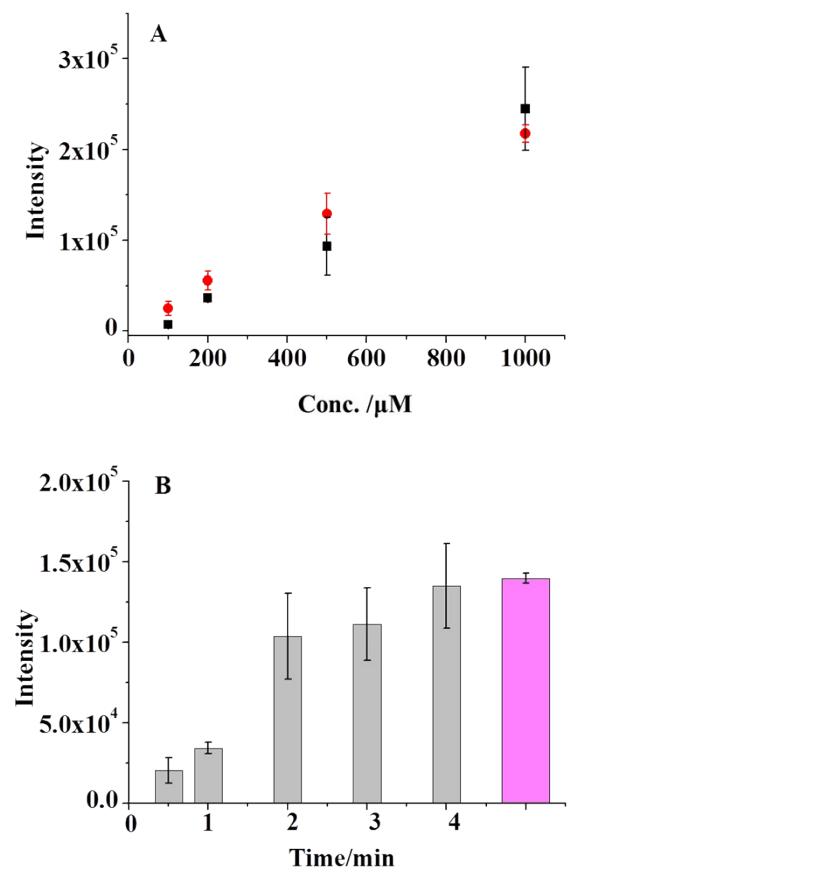


Figure S7. The negative-mode mass spectrum from the nano-capillary inserted into single cell without the application of negative voltage.

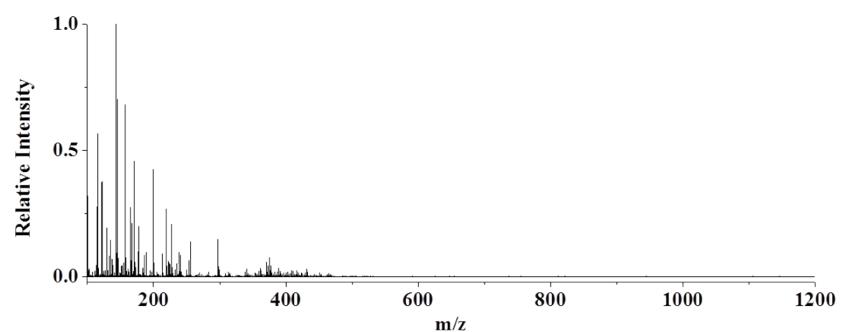


Figure S8. The negative-mode mass spectrum from the nano-capillary that was positioned near the neuron to sample extra-capillary buffer.

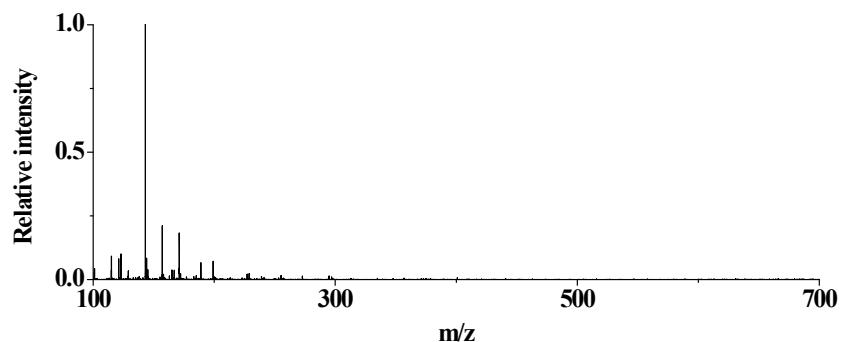


Table S1: The substance tentative assignment in the mass spectra for the analysis of Et_4NHSO_4 , $(\text{CH}_2)_6\text{N}_4$, glucose, sucrose, ascorbic acid, met-enkephalin and Angiotensin II in 100 mM NH_4HCO_3 that were electrochemically loaded into the nano-capillary.

Species	Exact Mass	MS mode	Representative m/z peaks in mass spectra
---------	------------	---------	---

Ascorbic Acid	176.03	-	175.02 (M-H)
$(\text{CH}_2)_6\text{N}_4$	140.11	+	141.11 (M+H)
Et_4NHSO_4	227.12	+	130.16 ($\text{C}_8\text{H}_{20}\text{N}^+$)
Glucose	180.06	+	198.10 (M+ NH_4)
		-	179.06 (M-H)
Sucrose	342.12	+	360.15 (M+ NH_4)
		-	341.11 (M-H)
Met-enkephalin	573.23	+	574.23 (M+H)
		-	572.22 (M-H), 285.61 (M-2H)
Angiotensin II	1045.53	+	1046.54 (M+H), 523.77 (M+2H)
		-	1044.53 (M-H), 521.76 (M-2H)

Table S2. The substance tentative assignment in the mass spectrums for the analysis of Et_4NHSO_4 , $(\text{CH}_2)_6\text{N}_4$, glucose, sucrose and ascorbic acid in 10 mM PBS that were electrochemically loaded into the nano-capillary.

Species	Exact Mass	MS mode	Representative peaks in mass spectra	m/z
Ascorbic Acid	176.03	-	175.02 (M-H)	
$(\text{CH}_2)_6\text{N}_4$	140.11	+	141.11 (M+H)	

Et ₄ NHSO ₄	227.12	+	130.16 (C ₈ H ₂₀ N ⁺)
Glucose	180.06	+	203.05 (M+Na)
		-	179.06 (M-H)
Sucrose	342.12	+	365.11 (M+Na)
		-	341.11 (M-H)

Table S3. The substance tentative assignment from the negative-mode mass spectrum for the analysis of single *Allium cepa* cell assisted by electrosyringe.

m/z (measured)	m/z (calculated)	Delta m/z (mDa)	Possible Substance	Formula
179.0560	179.0561	-0.1	Glucose/Fructose	C ₆ H ₁₂ O ₆ (-H ⁺)
341.1090	341.1089	0.1	Sucrose	C ₁₂ H ₂₂ O ₁₁ (-H ⁺)
463.0881	463.0882	-0.1	Quercetin glucoside	C ₂₁ H ₂₀ O ₁₂ (-H ⁺)
503.1617	503.1618	-0.1	Fructan(DP3)	C ₁₈ H ₃₂ O ₁₆ (-H ⁺)
625.1427	625.1410	1.7	Quercetin diglucoside	C ₂₇ H ₃₀ O ₁₇ (-H ⁺)
665.2159	665.2146	1.3	Fructan(DP4)	C ₂₄ H ₄₂ O ₂₁ (-H ⁺)
827.2689	827.2674	1.5	Fructan(DP5)	C ₃₀ H ₅₂ O ₂₆ (-H ⁺)
989.3208	989.3202	0.6	Fructan(DP6)	C ₃₆ H ₆₂ O ₃₁ (-H ⁺)
1151.3808	1151.3731	7.7	Fructan(DP7)	C ₄₂ H ₇₂ O ₃₆ (-H ⁺)

Table S4. The substance tentative assignment from the negative-mode mass spectrum for the analysis of single HeLa cell.

m/z (measured)	m/z (calculated)	Delta m/z (mDa)	Possible Substance	Formula
114.0560	114.0561	-0.1	Proline	C ₅ H ₉ NO ₂ (-H ⁺)
116.0715	116.0717	-0.2	Valine	C ₅ H ₁₁ NO ₂ (-H ⁺)
130.0871	130.0874	-0.3	Leucine/Isoleucine	C ₆ H ₁₃ NO ₂ (-H ⁺)

132.0312	132.0302	1.0	Aspartic acid	$\text{C}_4\text{H}_7\text{NO}_4(\text{-H}^+)$
145.0615	145.0619	-0.4	Glutamine	$\text{C}_5\text{H}_{10}\text{N}_2\text{O}_3(\text{-H}^+)$
146.0483	146.0459	2.4	Glutamic acid	$\text{C}_5\text{H}_9\text{NO}_4(\text{-H}^+)$
179.0549	179.0561	-1.2	Glucose	$\text{C}_6\text{H}_{12}\text{O}_6(\text{-H}^+)$
180.0661	180.0666	-0.5	Tyrosine	$\text{C}_9\text{H}_{11}\text{NO}_3(\text{-H}^+)$
306.0781	306.0765	1.6	Reduced glutathione	$\text{C}_{10}\text{H}_{17}\text{N}_3\text{O}_6\text{S}(\text{-H}^+)$
341.1100	341.1089	1.1	Lactose	$\text{C}_{12}\text{H}_{22}\text{O}_{11}(\text{-H}^+)$
403.0018	402.9949	6.9	UDP	$\text{C}_9\text{H}_{14}\text{N}_2\text{O}_{12}\text{P}_2(\text{-H}^+)$
426.0253	426.0221	3.2	ADP	$\text{C}_{10}\text{H}_{15}\text{N}_5\text{O}_{10}\text{P}_2(\text{-H}^+)$
442.0176	442.0171	0.5	GDP	$\text{C}_{10}\text{H}_{15}\text{N}_5\text{O}_{11}\text{P}_2(\text{-H}^+)$
482.9646	482.9613	3.3	UTP	$\text{C}_9\text{H}_{15}\text{N}_2\text{O}_{15}\text{P}_3(\text{-H}^+)$
505.9905	505.9885	2.0	ATP	$\text{C}_{10}\text{H}_{16}\text{N}_5\text{O}_{13}\text{P}_3(\text{-H}^+)$
521.9802	521.9834	-3.2	GTP	$\text{C}_{10}\text{H}_{16}\text{N}_5\text{O}_{14}\text{P}_3(\text{-H}^+)$
540.0583	540.0533	5.0	Cyclic ADP-ribose	$\text{C}_{15}\text{H}_{21}\text{N}_5\text{O}_{13}\text{P}_2(\text{-H}^+)$
606.0728	606.0743	-1.5	UDP-Glc-NAc	$\text{C}_{17}\text{H}_{27}\text{N}_3\text{O}_{17}\text{P}_2(\text{-H}^+)$
662.1021	662.1018	0.3	NAD	$\text{C}_{21}\text{H}_{27}\text{N}_7\text{O}_{14}\text{P}_2(\text{-H}^+)$

Table S5. The substance tentative assignment from the negative-mode mass spectrum for the analysis of single axon, dendrite and body in neuron cell.

m/z (measured)	m/z (calculated)	Delta m/z (mDa)	Possible Substance	Formula	Location
118.0504	118.0510	-0.6	Threonine	$\text{C}_4\text{H}_9\text{NO}_3(\text{-H}^+)$	Body/axon/ dendrite
124.0092	124.0074	1.8	Taurine	$\text{C}_2\text{H}_7\text{NO}_3\text{S}(\text{-H}^+)$	Body/axon/ dendrite
128.0356	128.0353	0.3	Pyroglutamic acid	$\text{C}_5\text{H}_7\text{NO}_3(\text{-H}^+)$	Body/axon/ dendrite

132.0299	132.0302	-0.3	Aspartic acid	$\text{C}_4\text{H}_7\text{NO}_4(-\text{H}^+)$	Body/axon/ dendrite
140.0118	140.0118	0.0	Phosphoethanolamine	$\text{C}_2\text{H}_8\text{NO}_4\text{P}(-\text{H}^+)$	Body/axon/ dendrite
146.0464	146.0459	0.5	Glutamic acid	$\text{C}_5\text{H}_9\text{NO}_4(-\text{H}^+)$	Body/axon/ dendrite
191.0212	191.0197	1.5	Citric acid/Isocitric acid	$\text{C}_6\text{H}_8\text{O}_7(-\text{H}^+)$	Body/axon/ dendrite
235.0757	235.0758	-0.1	Met-Ser/Ser-Met	$\text{C}_8\text{H}_{16}\text{N}_2\text{O}_4\text{S}(-\text{H}^+)$	Body/axon/ dendrite
306.0764	306.0765	-0.1	Glutathione	$\text{C}_{10}\text{H}_{17}\text{N}_3\text{O}_6\text{S}(-\text{H}^+)$	Body/axon/ dendrite
346.0565	346.0558	0.7	AMP	$\text{C}_{10}\text{H}_{15}\text{N}_5\text{O}_7(-\text{H}^+)$	Body/axon/ dendrite
445.0586	445.0531	5.5	CDP-Ethanolamine	$\text{C}_{11}\text{H}_{20}\text{N}_4\text{O}_{11}\text{P}_2(-\text{H}^+)$	Body
487.0989	487.1001	-1.2	Citicoline	$\text{C}_{14}\text{H}_{26}\text{N}_4\text{O}_{11}\text{P}_2(-\text{H}^+)$	Body
540.0473	540.0538	-6.5	Cyclic ADP-ribose	$\text{C}_{15}\text{H}_{21}\text{N}_5\text{O}_{13}\text{P}_2(-\text{H}^+)$	Body/ dendrite
662.1060	662.1018	4.2	NAD	$\text{C}_{21}\text{H}_{27}\text{N}_7\text{O}_{14}\text{P}_2(-\text{H}^+)$	Body/axon/ dendrite