Electronic supplementary Information (ESI)

Partial Least Squares-Discriminant Analysis (PLS-DA) for Classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps

Loong Chuen Lee, *a,b Choong-Yeun Liong **b and Abdul Aziz Jemain b

Supplementary Table 1

Summary results of several practical aspects in PLS-DA modeling.¹⁻⁶⁸ Dash bar (-) indicates no information is provided by the manuscript.

Year	² Dataset			³ Acr	⁴ DP		⁵MV			6D	R		7#PLS	⁸ FOM
¹ (Data)	N	J	G (*) a	ony m (local *)	SD	SI	1	E	0	M a x	СОР	BL		
2017 (NIR) ¹	210	~1k	*3	PLS 2- DA	MS C	-	AP Ran dom CV	RS (7:3)	-	-	-	-	-	SEN S, SPE C, ER, ROC
2017 (NIR) ²	360	149 91- 399 6 cm ⁻¹	*2	PLS- DA	-	-	-	RS (6:4) KS (5:5)	-	-	0.5 (0,1)	-	1-20	ER
2017 (MS) ³	20	50- 120 0 Da	2	PLS- DA	² MC ³ PS	¹ N M	-	-	PT (<i>n</i> =1k, robustnes s)	-	-	-	-	R2, Q2
2017 (2DE) ⁴	25	113 33	*2	PLS- DA	-	-	CV7	-	PT (<i>n</i> =40)	-	-	-	-	R2X, R2Y, Q2
2017 (MS)⁵	43	50- 600 0 m/z	*3	PLS- DA	VS	-	CV7	-	-	-	-	-	-	Q2, R2
2017 (NMR) ⁶	71	64k	*2	PLS- DA	² AS	¹ N M	-	-	PT (<i>n</i> =2k, Significanc e; overfitting)	-	-	-	-	R2, Q2, ROC, AUC
2017 (GC) ⁷	200	180	*4	PLS- DA	AS	-	LO	RS (7:3)	-	-	-	-	LOOC V (9 PLS)	ER,Q 2,R2
2017 (Raman) ⁸	80	320 0- 500 cm ⁻¹	*2	*PL S- DA	² MC	¹ S G	LO	? (5:5)	-	-	0.0 (-1,1)	-	-	RMS E, SEN S, SPE C, R2
2017 (UV-Vis) ⁹	73	190- 110 0 nm	*7	PLS- DA	¹ MC	² 1D - SG	LO	? (7:3)	-	-	ВТ	-	VB-CV	RMS E, SPE C, SEN

^{a.} Forensic Science Program, FSK, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia. Email:* lc_lee@ukm.edu.my

^{b.} School of Mathematical Sciences, FST, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia. Email: **Ig@ukm.edu.my

														S,ER
2017 (NIR) ¹⁰	161	700- 250 00 nm	*2	PLS- DA/ PLS DA	-	SN V 1D- SG	LO	? (7:3)	-	-	-	-	-	R2, RMS E
2017 (NIR) ¹¹	54	700- 250 0 nm	*2	PLS- DA	-	1D- SG	LO	? (7:3)	-	-	-	-	-	R2, RMS E
2017 (MIR) ¹²	190	400- 400 0 cm ⁻¹	*2	PLS- DA	-	-	LO	? (6:4)	-	-	-	G1= {-0.5, 0.5} G2= {0.5, 1.5} (0,1)	-	R2, RMS E, ROC, AUC
2017 (MIR) ¹³	221	310 0- 100 0 cm ⁻¹	2	PLS- DA	PS MC	2D- SG SN V	CV	IRS (1/3: 2/3) <i>n</i> =4 0	-	-	0.5	-	8 PLS	ROC, AUC, SPE C, SEN S
2017 (IM & FS) ¹⁴	88	350- 600 nm 256 colo ur level	*2	PLS- DA	PDS DS	SG	CV	KS (7:3)	-	-	0.5	-	-	ER
2017 (IA) ¹⁵	107	48	*2	PLS- DA	-	-	LN O		PT (several)	-	0.5 ROC	-		AUC, ROC
2017 (MS) ¹⁶	45	10	*2	PLS- DA	-	-	LO	? (7:3)	-	-	-	-	3 PLS	ER
2017 (SR) ¹⁷	384	350- 250 0 nm	2	PLS- DA	MC	-	CV 10	-	-	-	-	-	1-20	R2, RMS E
2017 (MS) ¹⁸	38	103 2	*3	PLS- DA	-	-	CV 10	-	-	-	-	-	-	AUC, SEN S, SPE C, R2Y
2017 (MS) ¹⁹	18	?	*2	PLS- DA	-	-	CV n= 100	-	-	-	-	-	-	ROC, AUC, SEN S, SPE C
2017 (MIR) ²⁰	135	650- 400 0	*3	PLS- DA	RS	-	LO	RS (8:2) <i>n</i> =1 k	-	-	-	-	LOOC V	ER, R2
2017 (MIR/ Raman) ²¹	264	400 0- 550 cm ⁻¹ / 200- 200 0 cm ⁻¹	*4 / *10	PLS- DA	-	¹ S NV ² S G	LO	-	-	-	-	-	-	ER
2017 (MIR) ²²	120	400 0- 400 cm ⁻¹	5	*PL S- DA	AS		LO	? (7:3)	-	-	0.5 (0,1)	-	LOOC V 4 PLS	RMS E R2, Q2
2017 (MIR/ IRMS) ²³	45	400 0- 650 cm ⁻¹	*2 / *3	*PL S- DA	MC BS	SG	CV	? (5:5)	-	-	YS	-	6 PLS	SEN S. SPE C
2017 (MS) ²⁴	240	230- 880 nm	2	PLS- DA	-	NS	LO AP	OT (7:3)	-	-	-	-	LOOC V 6/7 PLS	ER
2017	34	-	3	PLS-	VS	-	CV7	-	PT (<i>n</i> =20)	-	-	-	-	R2Y

(UV- Vis) ²⁵				DA										R2X Q2Y
2017 (MS) ²⁶	30	35- 300 m/z	*2	PLS- DA	MC PS AS	-	CV 10 (<i>n</i> = 5)	RS (7:3)	-	-	-	-	2 PLS	ER, R2, SPE C, SEN S
2017 (NMR) ²⁷	121	-	*2 / *3	PLS- DA	MC	-	VB- CV, LO	KS (7:3)	PT (<i>n</i> =100)	-	-	-	-	AUR OC,E R p- value
2017 (FS) ²⁸	79	250- 700 nm	*3	PLS- DA	-	-	VB- CV	? (2/3: 1/3)	-	-	-	-	2 PLS	RMS E,RO C, SEN S, SPE C
2017 (NMR) ²⁹	16	66K	*3	PLS- DA	-	-	SC V	-	-	-	-	-	2 PLS	R2 ER
2017 (NMR) ³⁰	54* 3	32k	3	PLS- DA	AS	PQ N	VB- CV7	-	PT (<i>n</i> =50)	-	-	-	-	R2,Q 2
2016 (MIR) ³¹	300	650- 400 0 cm ⁻¹	*3	*PL S- DA	³ MC	¹ 2D - SG ² N S	VB- CV	(5:5)	-	-	YS	-	-	SEN S SPE C
2016 (GC) ³²	122	16	*2	PLS- DA	² AS	¹ N M	AP RC V (<i>n</i> = 10K)	? (6:4)	PT (<i>n</i> =10K)	-	0.5 KDF	-	-	AUR OC Kapp a SEN S SPE C
2016 (IM) ³³	60	768	*4	PLS- DA	MC	-	CB- CV	RS (7:3)	-	-	YS	-	-	RMS E,SE NS, SPE C
2016 (MIR) ³⁴	328	400 0- 600 cm ⁻¹	*4	PLS- DA	² MC	¹ S NV	LO	RS (2/3: 1/3)	-	-	BT	-	-	SEN S, C, EFF, MCC, RMS E
2016 (MS) ³⁵	27 251	30- 300 amu	*2	PLS- DA	AS	-	LO	-	-	-	-	-	-	R2, RMS E
2016 (UV- Vis) ³⁶	100	190- 800 nm	5	PLS- DA	-	-	LO	KS (2/3: 1/3)	-	-	-	-	9 PLS	ER
2016 (MIR) ³⁷	170 195	400 0- 400 cm ⁻¹	*5	PLS- DA	-	¹ S G ² S NV ³ A S	MC CV	RS (2/3: 1/3) <i>n</i> =5 k	-	-	-	-	MCCV	AUR OC ER
2016 (NIR) ³⁸	139	400 0- 100 00 cm ⁻¹	*2	PLS- DA	MS C	SN V 2D- SG	LO	KS (7:3)	-	-	-	-	-	ER
2016 (NMR) ³⁹	18	32k	*3	PLS- DA	² MC	¹ N S	CV- AN OV	-	-	-	-	-	4 PLS	R2X, R2Y, Q2

2016 (Raman)⁴ ₀	45	350 0-50	*2	PLS-	¹ MC	² 2D	CV	RS	-	-	-	-	-	SEN
		cm⁻¹		DA		- SG		(2/3: 1/3)						S SPE C, ER ROC
2016 (MIR) ⁴¹	46	400 0- 600 cm ⁻¹	3	PLS 2- DA	-	SG	LO AP	KS (7:3)	-	-	-	0.45- 0.55 (UA)	-	RMS E R2
2016 (Raman) ⁴ 2	159	400- 400 0 cm ⁻¹	*2	PLS- DA	² MC	¹ B C	LO	-	-	-	-	-	LOOC V 3 PLS	ER ROC SEN S SPE C
2016 (MIR) ⁴³	30	400 0- 500 cm ⁻¹	6	PLS- DA	-	¹ B C ² N S ³ 1D - SG	-	-	-	-	-	0.5	7 PLS	R2Y Q2 ER
2016 (MIR/ MS) ⁴⁴	146	50- 350 amu / 400 0- 600 cm ⁻¹	3	PLS- DA	AS MC	SN V 1D- SG	LO	RS (2/3: 1/3 n=1 0	-	-	-	-	-	ER SEN S SPE C
2016 (NIR- IM) ⁴⁵	576	-	*2 / *3	PLS- DA	-	¹ S G ² D T ³ B C	VB- CV 10 AP	RS (6:4)	-	-	-	-	-	RMS E
2016 (NIR) ⁴⁶	90	649	3	PLS- DA	AS	-	CV3	-	PT	-	-	-	1-10	PRE SS
2015 (FS) ⁴⁷	95	270- 640 nm	2 5	PLS DA	MC	-	VB- CV AP	-	-	-	-	-	-	SEN S SPE C ER
2015 (Raman)⁴ ଃ	95	156 0-90 cm ⁻¹	9	*PL S- DA	-	BC NM SG	CV9 /20 AP	-	-	-	-	-	-	SEN SPE C ER R2 RMS E
2015 (MS) ⁴⁹	23	50- 550 m/z	*2 / *3	PLS- DA	AS	-	CV7	-	-	-	-	-	-	R2X, R2Y, Q2
2015 (MIR) ⁵⁰	88	400 0- 600 cm ⁻¹	4	PLS 2- DA	MC	-	LO	RS (2/3: 1/3)	-	-	-	BT	-	SEN S, SPE C
2015 (EN) ⁵¹	407	-	*4	PLS- DA	-	-	CV 10 (<i>n</i> = 1K)	-	-	-	-	-	-	AUC SPE C SEN S RMS E
2015 (MIR) ⁵²	125	400 0- 600 cm ⁻¹	5	PLS 2- DA	-	-	LO	RS (2/3: 1/3)	-	-	-	(0.49- 0.51) UA	-	RMS E R2
2015 (LIBS) ⁵³	125 0	-	5	PLS 2-	-	-	AP CV	-	-	-	-	UA	4 PLS	SEN S

				DA										SPE C FR
2015 (HI) ⁵⁴	396	966- 170 0 nm	*2	PLS- DA	³ MC	¹ S NV ² 1D - SG	CB- CV	? (7:3)	-	-	-	-	-	SEN S SPE C EFF
2015 (Raman)⁵ ₅	294	109- 181 0 cm ⁻¹	14	PLS- DA	-	2D NE AS	CV	KS (2/3: 1/3)	-	-	BT	-	-	SEN S SPE C
2015 (NIR) ⁵⁶	186	400 0- 100 00 cm ⁻¹	2	PLS- DA	MC MS C	SN V 1D, 2D	CV	? (5:5)	-	-	-	-	-	ER
2015 (MIR) ⁵⁷	155	600- 400 0 cm ⁻¹	5	PLS 1- DA	² MC	¹ 1D - SG	VB- CV	? (2/3: 1/3)		-	0.5 BT	-	-	ER R2Y R2X
2014 (EN) ⁵⁸	127	12	4	PLS- DA	AS	-	CV 10 <i>n</i> = 100	RS (6:4)	BTT (<i>n</i> =1k)	-	-	-	-	SPE C SEN S ER
2014 (VSC) ⁵⁹	540	400- 100 0 nm	25	*PL S- DA	³ MC	¹ S NV ² 1D - SG	LO	? (7:3)	-	-	-	-	-	RMS E
2014 (FES) ⁶⁰	75	260- 860 nm	3	PLS 2- DA	MC	-	LO	KS ?	-	-	-	-	-	SEN S SPE C ER
2014 (NIR) ⁶¹	180	135 0- 180 0 nm	2	*PL S- DA	-	-	CV	KS RS (<i>n</i> = 1k)	-	-	-	0.3-0.7 (UA)	-	ER
2014 (NIR/ MIR) ⁶²	910	110 0- 249 8 nm / 600- 400 0 cm ⁻¹	*2	*PL S- DA	-	1D- SG	CV 10	? (2/3: 1/3)	-	-	-	-	-	ER SEN S SLEC
2014 (NIR/ Raman) ⁶³	320 78	100 0- 250 0 Nm / 100- 350 cm ⁻¹	2	*PL S- DA	² MC	¹ S NV	LO AP	OT (2/3, 1/3)	-	-	-	-	-	ER SEN S SPE C
2014 (MS) ⁶⁴	113	7	2	PLS- DA	AS MC	NS	CV	RS (2/3: 1/3) n=1 k	-	-	-	-	-	SEN S SPE C
2014 (MS) ⁶⁵	210	40- 200 m/z	5	PLS- DA	AS	-	CV	RS (7:3)	-	-	-	-	-	ER
2014 (ICP- MS) ⁶⁶	39	10p pb- 100	*2	PLS- DA	-	-	LO	-	-	-	0.00 (1,-1)	-	1-15	ER
2014	58	-	*3	*PL	AS	WL	VB-	DUP	-	-	[- 0.7,0.7,0	-	VB-	ER

(NMR, EEM, HPLC) ⁶⁷				S- DA		SN M	CV 10	LEX (?)			.2]		CV10	
2013 (Raman) ⁶ 8	85	320 0- 200 cm ⁻¹	*3	PLS 2- DA	³ MC	¹ N V ² 2D - SG	LO	RS (7:3)	BTT (<i>n</i> =1k)	-	BT	-	-	ER SPE C SEN S EFF RMS E

¹Data: 2DE (two-dimensional electrophoresis); HPI (Hyperspectral imaging); IM (image); FES (Flame Emission Spectroscopy); FS (fluorescence spectroscopy); IA (immunoassay); SR (spectral reflectance); VSC (Video Spectral comparator), NMR (nuclear magnetic resonance); EEM (florescence excitation-emission matrix); HPLC (High performance liquid chromatography)

²Dataset: N (sample sizes); J (number of variables); G (number of groups); ^{a*} indicates imbalanced dataset

³Acronym: Local* indicates local region is used as input variables

⁴DP (Data pre-processing): SD=set dependent (MC=mean-center; VS=variance scaling, AS=autoscaling; BS=block-scaling; PS=Pareto scaling; MSC=multiplicative scatter correction; DS=direct standardization; PDS=piecewise DS; RS=range scaling), SI=set independent (NM=normalization; SNV=standard normal variates; Der=derivatives; WLS=weighted least squares), bold indicates the chosen DP, superscript numbers indicate sequence of DP

⁵MV (Model Validation methods): I=internal VM (AP=autoprediction; CV-*v*=*v*-fold CV, VB-CV = Venetian blinds-CV; CB-CV= Contiguous block-CV; LNO=leave-*n*-out; LO=leave one out CV, SCV=segment CV that all replicates of one class is leave out, RCV=repeated CV), E=external VM (KS=Kennard-stone sampling; RS=random sampling; IRS=iterative RS; OT=others), O=optional (BTT=bootstrapping; PT=permutation test)

⁶DR: Max=maximum value, COP=cut-off point (BT=Bayesian theorem; YS=ypred plot; KDF=Kernel density estimate function), BL=boundary line (UA= unassigned)

⁷#PLS (method to determine number of optimum PLS): LO=leave-one-out cross-validation, 2CV=repeated CV, MCCV=Monte Carlo CV; VB-CV (Venetian blinds –CV)

⁸FOM (Figures of Merit): ER (error rate/accuracy rate); AUC (Area under curve); EFF (efficiency); F (residue); MCC (Matthews correlation coefficient); Q2 (coefficient of prediction); PREC (precision); PRESS (predictive error of sum of squares); R2 (coefficient of determination); RMSEC/CV/P (root mean squared error of calibration/cross-validation/prediction); ROC (receiver operator characteristic); SEL (selectivity); SENS (sensitivity); SPEC (specificity)

References

- 1. M.L. Amodio, F. Ceglie, M.M.A. Chaudhry, F. Piazzolla, G. Colelli, *Postharvest Bio. Tech.*, 2017, 125, 112-121.
- 2. B. Yang, L. Yao, T. Pan, Engineering, 2017, 9, 181-189.
- 3. J.L. Wu, C-X. Zhou, P-J. Wu, Y-Q. Guo, F. Xue, A. Getachew, S-F. Xu PLoS ONE, 2017, 12, e0175573.
- 4. L. Vitova, Z. Tuma, J. Moravec, M. Kvapil, M. Matejovic, J. Mares, BMC Nephrology. 2017, 18, 112.
- 5. S.G. Snowden, A.A. Ebshiana, A. Hye, Y. An, O. Pletnikova, R. O'Brien, J. Troncoso, C. Legido-Quigley, M. Thambisetty, *PLoS Med.*, 2017, 14, e1002266.
- R.K. Sharma, K. Mishra, A. Farooqui, A. Behari, V.K. Kapoor, N. Sinha, *Inflamm. Res.* 2017, 66, 97-105.

- Q. Peng, X. Xu, C. Shen, R. Tian, B. Hu, X. Li, H. Zou, F. Chen, J. Wang, J. Jin, B. Li, G. Xie, *Innov. Food Sci. Emerg. Technol.*, 2017, 44, 212-216.
- M.K. Nieuwoudt, S.E. Holroyd, C.M. McGoverin, M.C. Simpson, D.E. Williams, *Appl. Spectrosc.* 2017, 71, 308-312.
- 9. A.R. Martins, M. Talhavini, M.L. Vieira, J.J. Zacca, J.W.B. Braga, Food Chem. 2017, 229, 142-151.
- F. Mabood, J. Hussain, M.O.O. AN, S.A. Gilani, S. Farooq, Z. Naureen, F. Jabeen, M. Ahmed, Z. Hussain, A. Al-Harrasi, *J. Adv. Dairy Res.*, 2017,5,1000167.
- F. Mabood, F. Jabeen, M. Ahmed, J. Hussain, S.A.A. Al Mashaykhi, Z.M.A. Al Rubaiey, S. Farooq, R. Boque, L. Ali, Z. Hussain, A. Al-Harrasi, A.L. Khan, Z. Naureen, M. Idrees, S. Manzoor, *Food Chem.* 2017, 221, 746-750.
- 12. X. Li, K. Xu, Y. Zhang, C. Sun, Y. He, PLoS One, 2017, 12, 0169430.
- A. Khoshmanesh, D. Christensen, D. Perez-Guaita D, I.I. Ormaetxe, S.L. O'Neill, D. McNaughton, B.R. Wood, *Anal. Chem.* 2017, 89, 5285-5293.
- K.D.T.M. Milanez, T.C.A. Nobrega, D.S. Nascimento, M. Insausti, M.J.C. Pontes, *Microchem. J.*, 2017, 133, 669-675.
- H. Jorgensen, A.S. Hill, M.T. Beste, M.P. Kumar, E. Chiswick, P.Fedorcsak, K.B. Isaacson, D.A. Lauffenburger, L.G. Griffith, E. Qvigstad, *Fertil Steril.* 2017, 107, 1191-1199.e2.
- 16. S.M. Azcarate, R. Gil, P. Smichowski, M. Savio, J.M. Camina, Microchem. J., 2017, 130, 1-6.
- M. Garriga, S. Romero-Bravo, F. Estrade, A. Escobar, I.A. Matus, A. del Pozo, C.A. Astudillo, G.A. Lobos, *Front. Plant Sci.*, 2017, 8, 280.
- A.P. DeFilippis, P.J. Trainor, B.G. Hill, A.R. Amraotkar, S.N. Rai, G.A. Hirsch, E.C. Rouchka, A. Bhatnagar, *PLoS One*, 2017, 12, e0175591.
- P.D. Boccio, F. Perrotti, C. Rossi, I. Cicalini, S.Di Santo, M. Zucchelli, P. Sacchetta, D. Genovesi, D. Pieragostino, *Adv. Radiat. Oncology*, 2017, 2, 118-124.
- 20. M. Manfredi, E. Barberis, E. Marengo, Appl. Phys. A, 2017, 123, 35.
- 21. K. Georgouli, J.M.D. Rincon, A. Koidis, Food Chem., 2017, 217, 735-742.
- M. Kharbach, R. Kamal, M. Bousrabat M, M.A. Mansouri, I. Barra, K. Alaoui, Y. Cherrah, Y.V. Heyden, A. Bouklouze, *Chemom. Intell. Lab. Syst.*, 2017, 162, 182-190.
- V.H.J.M.D. Santos, A.S. Ramos, J.P. Pires, P. de M. Engelmann, R.V. Lourega, J.M.M. Ketzer, L.F. Rodrigues, *Chemom. Intell. Lab. Syst.*, 2017, 161, 70-78.
- 24. J. Peng, K. Song, H. Zhu, W. Kong, F. Liu, T. Shen, Y. He, Sci. Rep., 2017, 7, 44551.
- L. Bogdanovska, A.P. Panovska, M. Popovska, A. Dimkitrovska, R. Petkovska, *Saudi Pharmaceutical* J., 2017, 25, 1022-1031.
- 26. F.J. Cuevas, J.M. Moreno-Rojas, M.J. Ruiz-Moreno, Food Chem., 2017, 221, 1930-1938.
- M.A.C. Reed, R. Singhal, C. Ludwig C, J.B. Carrigan, D.G. Ward, P. Taniere, D. Alderson, U.L. Gunther, *Neoplasia*, 2017, 19, 165-174.
- R. Rios-Reina, S. Elcoroaristizabal, J.A. Ocana-Gonzalez, D.L. Garcia-Gonzalez, J.M. Amigo, R.M. Callejon, *Food Chem.* 2017, 230, 108-116.
- M.V.L. Soares, E.G.A. Filho, L.M. Silva, E.H. Novotny, K.M. Canuto, N.J. Wurlitzer, N. Narain, E.S. de Brito, *Food Chem.*, 2017, 219, 1-6.

- M, Vermathen, M, Marzorati, G, Diserens, D. Baumgartner, C. Good, F. Gasser, P. Vermathen, Food Chem. 2017, 233, 391-400.
- 31. J. Manheim, K.C. Doty, G. McLaughlin, I.K. Lednev, Appl. Spectrosc. 2016, 70, 1109-1117.
- 32. M. Alewijn, H.V.D. Voet, S.V. Ruth, J. Food Composition Anal., 2016, 51, 15-23.
- 33. L. Valderrama, P. Valderrama, Chemom. Intell. Lab. Syst., 2016, 156, 188-195.
- F.B.D. Santana, L.C. Gontijo, H. Mitsutake, S.J. Mazivila, L.M.D.S. Souza, W.B. Neto, Food Chem., 2016, 209, 228-233.
- D. Melucci, A. Bendini, F. Tesini, S. Barbieri, A. Zappi, S. Vichi, L. Conte, T.G. Toschi, Food Chem., 2016, 204, 263-273.
- P.H.G.D. Diniz, M.F. Barbosa, K.D.T.D.M. Milanez, M.F. Pistonesi, M.C.U.D. Araujo, Food Chem. 2016, 192, 374-379.
- 37. S. Hou, J. Chemometr., 2016, 30, 663-681.
- L.C.D. Carvalho, C.L.M. Morais, K.M.G.D. Lima, L.C. Cunha Jr., P.A.M. Nascimento, J.B. de Faria, G.H. de Almeida Teixeira, *Anal Methods*. 2016, 28, 5658-5666.
- M. Zotti, S.A.D. Pascali, L.D. Coco, D. Migoni, L. Carrozzo, G. Mancinelli, F.P. Fanizzi, Food Chem., 2016, 196, 601-609.
- P.H. Rodrigues Jr., K.D.S. Oliveira, C.E.R.D. Almeida, L.F.C. De Oliveira, R. Stephani, M. da Silva Pinto, A.F. de Carvolho, I.T. Perrone, *Food Chem*. 2016, 196, 584-588.
- 41. A. Hirri, A. Balouki, A. Oussama, Basic Res. J., 2016, 5, 103-108.
- 42. W. Liu, Z. Sun, J. Chen, C. Jing, J. Spectrosc. 2016, 1603609.
- 43. Y. Li, J. Zhang, T. Li, H. Liu, Y. Wang, PLoS One, 2016, 11, e0168998.
- E. Borras, J. Ferre, R. Boque, M. Mestres, L. Acena, A. Calvo, O. Busto, *Food Chem.*, 2016, 203, 314-322.
- 45. S. Shrestha, M. Knapic, U. Zibrat, L.C. Deleuran, R. Gislum, Sens Actuators B. 2016, 237, 1027-1034.
- 46. A. Racz, D. Bajus, M. Fodor, K. Heberger, Chemom. Intell. Lab. Systs., 2016, 151, 34-43.
- 47. L. Lenhardt, R. Bro, I. Zekovic, T. Dramicanin, M.D. Dramicanin, Food Chem., 2015, 175, 284-291.
- D.M.I. Ho, A.E. Jones, J.Y. Goulermas, P. Turner P, P. Turner, Z. Varga, L. Fongaro, T. Fanghanel, K. Mayer, *Forensic Sci. Int.* 2015, 251, 61-68.
- 49. Y. Wang, L. Xu, H. Shen, J. Wang, W. Liu, X. Zhu, R. Wang, X. Sun, L. Liu, Sci. Rep., 2015, 5, 18926.
- S.J. Mazivila, H. Mitsutake, F.B.D. Santana, L.C. Gontijo, D.Q. Santos, W.B. Neto, *J. Braz. Chem. Soc.*, 2015, 26, 642-648.
- 51. X. Shao, H. Li, N. Wang N, Q. Zhang, Sensor, 2015, 15, 26726-26742.
- 52. A. Hirri, A. Boulli, A. Oussama, Int. J. Chem. Mater. Environ. Res. 2015, 2, 30-36.
- 53. S. Moncayo, S. Manzoor, F. Navarro-Villoslada, J.O. Caceres, *Chemom. Intell. Lab. Syst.* 2015, 146, 354-364.
- 54. R. Calvini, A. Ulrici, J.M. Amigo, Chemom. Intell. Lab. Syst. 2015, 146, 503-511.
- 55. F.D.S.L. Borba, R.S. Honorato, A.D. Juan, Forensic Sci. Int., 2015, 249, 73-82.
- 56. H. Chen, Z. Lin, H. Wu, L. Wang, T. Wu, C. Tan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 2015, 135, 185-191.
- 57. B.G. Botelho, N. Reis, L.S. Oliveira, M.M. Sena, Food Chem., 2015, 181, 31-37.

- P.S. Gromski, E. Correa, A.A. Vaughan, D.C. Wedge, M.L. Turner, R. Goodacre, *Anal. Bioanal. Chem.*, 2014, 406, 7581-7590.
- 59. V.A.G.D. Silva, M. Talhavini, I.C.F. Peixoto, J.J. Zacca, A.O. Maldaner, J.W.B. Braga, *Microchem. J.*, 2014, 116, 235-243.
- 60. J.M.D. Paulo, J.E.M. Barros, P.J. Barbiera, Energy Fuels, 2014, 28, 4355-4361.
- 61. G. Tang, K. Tian, X. Song, Y. Xiong, S. Min, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2014, 121, 678-684.
- 62. O. Devos, G. Downey, L. Duponchel, Food Chem., 2014, 148, 124-130.
- 63. E. Borras, J.M. Amigo, F.V.D. Berg, R. Boque, O. Busto, Food Chem., 2014, 153, 15-19.
- E. Capuano, G.V.D. Veer, R. Boerrigter-Eenling, A. Elgersma, J. Rademaker, A. Sterian, S.M. van Ruth, Food Chem., 2014, 164, 234-241.
- 65. H.-H. Gan, C. Soukoulis, I. Fisk, Food Chem., 2014, 146, 149-156.
- S.A. Drivelos, K. Higgins, J.H. Kalivas, S.A. Haroutounian, C.A. Georgiou, *Food Chem.*, 2014, 165, 316-322.
- M. Silvestri, A. Elia, D. Bertelli D, E. Salvatore, C. Durante, M. Li Vigni, A. Marchetti, M. Cocchi, *Chemom. Intell. Lab. Systs.* 2014, 137, 181-189.
- M.R.D. Almeida, D.N. Correa, W.F.C. Rocha, F.J.O. Scafi, R.J. Poppi, *Microchem. J.*, 2013, 109, 170-177.