Supporting Information

Carbon Nanodots Aqueous Binding Phase based Diffusive Gradients in Thin-Films Technique for Measurement of Dissolvable Copper and Lead Species in Aquatic Environment

Nan You^a, Zhong-Ming Feng^b, Yun Wang^b, Hong-Tao Fan^{a,*}, Ting Sun^{b,*}

^a College of Chemistry Chemical Engineering, and Environmental Engineering, Liaoning
University of Petroleum & Chemical Technology, Fushun, Fushun 113001, China; ^b
Department of Chemistry, Northeastern University, Shenyang, 110004, China

* Corresponding author

E-mail: sun1th@163.com (T. Sun) and httyf_77@163.com (H.-T. Fan)

Measured parameters	Water samples		
	Hun	Xi	Industrial
	River	Lake	discharge water
Location	41°41′ N,	41°44′ N,	41°73′ N,
	123 °13' E	123 °14' E	123 °24' E
Conductivity (µs cm ⁻¹) ^a	1932	1754	2813
Salinity (ppt) ^a	0.85	0.90	1.1
ORP (mV) ^a	206	161	312
$TDS (mg L^{-1})^{a}$	745	703	932
DOC (mg C L^{-1}) ^b	9.7±2.1	14.6±4.1	78.7±9.3
$\text{COD} (\text{mg } L^{-1})^{\text{ c}}$	74.1±9.7	94.3±8.7	694.3±79.1
pН	7.9 ± 0.4	7.5±0.3	5.6±0.1
$Cu^{d}/mg L^{-1}$	N.D. ^e	N.D.	N.D.
$Pb^{d}/mg L^{-1}$	N.D.	N.D.	N.D.

Table S1 Physic-chemical characters of the water samples

^a Conductivity, salinity, oxidation-reduction potential and total dissolved solids were measured by pen conductivity meter (ST10C-B), pen salinity meter (ST20S), pen ORP meter (ST10R)and pen TDS meter (ST10T-B), respectively (Ohaus, Canada).

^b Dissolved organic carbon was measured using a TOC analyzer (Dohrmanne DC-190, GE, USA).

^c Chemical oxygen demand was measured by potassium dichromate method.

 $^{\rm f}$ The concentrations of Cu^{2+} and Pb^{2+} were measured by FAAS and by AFS, respectively .

^e N.D. means not detected.

Figure S1 The schematic diagram of DGT device

Figure S2 XPS spectra of CDs for the O_{1s} peak

Figure S4 FTIR spectra of CDs before (black line) and after the adsorption of Cu²⁺ (blue line) and Pb²⁺ (red line).

Figure S5 XPS spectra of CDs after the adsorption of Cu^{2+} and Pb^{2+} for the C_{1s} peak (a), the Cu_{2p} peak (b) and the Pb_{4f} peak (c).

Figure S6 Effects of FA and TA on the diffusion coefficients of Cu²⁺ and Pb²⁺.