Electronic supplementary information

Rational functionalization of reduced graphene oxide with imidazole group for the electrochemical sensing of bisphenol A-an endocrine disruptor

Bhaskar Manna^{*}

Functional Materials and Electrochemistry Laboratory, Department of Chemistry,

Indian Institute of Technology Kharagpur,

Kharagpur 721302, West Bengal, India

*Corresponding author.

E-mail: bhaskar_manna@chem.iitkgp.ernet.in;

bhasmanna.chem@yahoo.com

Synthesis of graphene oxide (GO)

GO was synthesized from pristine graphite according to modified Hummers method. Briefly 25 mL of concentrated H₂SO₄ was slowly poured into a mixture of graphite powder (0.5 g) and NaNO₃ (0.5 g) in a 500 mL round bottom (RB) flask at 0 °C. Solid KMnO₄ (3 g) was added to the RB at < 5 °C and the mixture was stirred for 1 h at room temperature. Water (150 mL) was slowly added to the RB and stirred for another 15 min. Then H₂O₂ solution (30%) was added to the RB until the gas evolution was ceased. The residue was then washed repeatedly with 15% HCl solution till the washing solution gave negative test for sulfate ion (tested with BaCl₂ solution). After that the residue was repeatedly washed with Millipore water and dried in vacuum to get the yellow-brown solid GO.

Electrochemical reduction of GO-Hist. The potential of GO-Hist electrode was cycled within the potential window 0 to -0.8 V (20 cycles) at a sweep rate of 50 mV s⁻¹.

Raman spectral profiles of GO, GO-Hist, rGO and rGO-Hist.

TEM images of GO (A), GO-Hist (B) and rGO-Hist (C). EDX analysis of GO (D), GO-Hist (E) and rGO-Hist (F).

Δ		Element	Wt %	At %
1	ск 446-	CK	73.10	82.48
in the second	1	O K	18.60	15.75
	335-	CuL	08.22	01.75
	223-	CuK	00.08	00.02
	111-D Ka CuLa	CuKa		
		СиКЪ		
<u>100 n</u> m	3.75	1.00 12.25 16.50 2 Energy - k	1.75 25.00 29.25 V	33.50 37.75
All ACT	⁵⁹³	Element	Wt %	At %
B	E.	CK	74.69	80.59
and the second	475-	NK	08.77	08.11
A CALLER AND	356 -	O K	13.08	10.59
		CuL	03.36	00.68
	237 -	CuK	00.10	00.02
A Strate Car	118-	СиК		
ALL ALL A	O K Cul H K	CuK		
100 nm	3.75	8.00 12.25 16.50 2	0.75 25.00 29.25	33.50 37.75
		chordy - h		
	242	Flemen	Wt %	At %
C	сĸ F	СК	78.79	84.96
	194-	NK	07.91	07.31
	145-	O K	08.28	06.70
(A A A A A A A A A A A A A A A A A A A			04.79	00.98
	97 -	CuK	00.23	00.05
	48 - CuL 0 K	СиК		
200 nm				
- Start	3.75 8	.00 12.25 16.50 2 Energy - k	0.75 25.00 29.25 V	33.50 37.75

Survey scan (A) and deconvoluted (B) C1s XPS profiles of GO

(A) Cyclic voltamograms of rGO-Hist modified electrode in 0.1 M PBS (pH 7.2) at different scan rates: (a) 25, (b) 50, (c) 75, (d) 100, (e) 150 mV s⁻¹ containing 20 μ M BPA. (B) Plot of peak current (i_p) vs (scan rate)^{1/2}.

Amperometric i–t curves for the oxidation of BPA at GO, GO-Hist, rGO and rGO-Hist electrodes in a stirred solution of 0.1 M PBS (pH 7.2). Each addition increased the concentration of BPA by 5 μ M.

Amperometric response depicting the detection of low concentration of BPA in 0.1 M PBS of pH 7.2 polarizing the rGO-Hist electrode at 0.49 V.

Amperometric i-t curve illustrating the operational stability of the rGO-Hist electrode towards BPA measurement in 0.1 M PBS of pH 7.2. The electrode was polarised at 0.49 V and 20 μ M BPA was injected.

Amperometric i-t curve illustrating the interference effect of other analytes for the sensing of BPA at rGO-Hist electrode in 0.1 M PBS of pH 7.2. BPA, K⁺, Zn²⁺, Ca²⁺, Mg²⁺, Cu²⁺, Fe³⁺, Cl⁻, Br⁻, NH₄⁺, SO₄²⁻. CO₃²⁻, NO₃⁻, hydroquionone, catechol, 4-nitrophenol and nitrobenzene (20 μ M each) were injected one after another as indicated. The electrode was polarised at 0.49 V.

Table S1

Analytical performances of several electrochemical BPA sensor.

Sl.	Sensing	Potential	Linear	Limit of		Remarks
No.	Interface	(V)	range	Detection	ence	
			(nM)	(LOD)	efer	
				(nM)	Ř	
1	Pt/GR- CNTs/GCE	0.65 vs SCE	60–80000	42	1	Linear range starts from high concentration and LOD is higher than this work
2	CTAB-CPE	0.87 vs SCE	25–1000	7.5	2	Short linear range, linear range starts from high concentration and LOD is higher than this work
3	Arg-G/GCE	0.511 vs SCE	5–40000	1.1	3	LOD is higher than this work
4	PAMAM-Fe ₃ O ₄	0.541 vs SCE	10–3070	5	4	Short linear range and LOD is higher than this work
5	CoPc-CPE	0.454 vs SCE	87.5– 12500	10	5	Short linear range, linear range starts from high concentration and LOD is higher than this work
6	AuNPs/SGNF/G CE	0.343 vs SCE	80– 250000	35	6	Linear range starts from high concentration and LOD is higher than this work
7	Tyr-SF- MWNTs- CoPc/GCE	0.625 vs SCE	50–3000	30	7	Short linear range, linear range starts from high concentration and LOD is higher than this work
8	MWCNT- GNPs/GCE	_	20–20000	7.5	8	Short linear range, linear range starts from high concentration and LOD is higher than this work
9	3Au-1Pd alloy NPs/GN/GCE	0.528 vs Ag/ AgCl electrode	10–5000	4	9	Short linear range and LOD is higher than this work
10	CS-Fe ₃ O ₄ /GCE	0.541 vs SCE	50-30000	8	10	Linear range starts from high concentration and LOD is higher than this work
11	CNT/GCE	0.590 vs Ag/AgCl	300– 100000	98	11	Linear range starts from high concentration and LOD is higher than this work

13 MCM-41/CPE - 220-8800 38 13 Short linear range, linear range starts from high concentration and LOD is higher than this work 14 Boron-doped diamond Ag/AgCl (3 M KCl) 440-5200 210 14 Short linear range, linear range starts from high concentration and LOD is higher than this work 15 Tyr-NGP- Ch/GC -0.1 vs Ag/AgCl (3 M KCl) 100-2000 33 15 Short linear range, linear range starts from high concentration and LOD is higher than this work 16 CS/MNPs- Ch/GC 0.49 vs SCE 60-11000 17 16 Short linear range, linear range starts from high concentration and LOD is higher than this work 17 N-GS/GCE 0.54 vs SCE 10-1300 5 17 Short linear range starts from high concentration and LOD is higher than this work 18 CNHs- Nafion/GCE - 200000- 100000 1800 18 Linear range starts from high concentration and LOD is higher than this work 19 f- 0.623 vs SCE 99-5794 32 19 Short linear range, linear range starts from high concentration and LOD is higher than this work 20 MWCNT/MAM 0.56 vs SCE 10-40800 5 20 LOD is higher than this work 21	12	SWNT- tyrosinase/CPE	-0.15 vs Ag/AgCl	100– 12000	20	12	Short linear range, linear range starts from high concentration and LOD is higher than this work
14 Boron-doped diamond electrode 0.9 vs Ag/AgCl (3 M KCl) 440–5200 210 14 Short linear range, linear range starts from high concentration and LOD is higher than this work 15 Tyr-NGP- Chi/GC -0.1 vs Ag/AgCl (3 M KCl) 100–2000 33 15 Short linear range, linear range starts from high concentration and LOD is higher than this work 16 CS/MNPs- rGO/GCE 0.49 vs SCE 60–11000 17 16 Short linear range, linear range starts from high concentration and LOD is higher than this work 17 N-GS/GCE 0.54 vs SCE 10–1300 5 17 Short linear range, starts from high concentration and LOD is higher than this work 18 CNHs- Nafion/GCE - 200000– 1000000 1800 18 Linear range, starts from high concentration and LOD is higher than this work 19 f- SWCNT/PC4/G CE 0.623 vs SCE 99–5794 32 19 Short linear range, linear range starts from high concentration and LOD is higher than this work 20 MWCNT/MAM 0.56 vs SCE 10–40800 5 20 LOD is higher than this work 21 Sol-gel 0.5 vs SCE 113– S2(199) 3.6 21 Linear range, starts from high concentration and LOD is higher than this work	13	MCM-41/CPE	_	220-8800	38	13	Short linear range, linear range starts from high concentration and LOD is higher than this work
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	14	Boron-doped diamond electrode	0.9 vs Ag/AgCl (3 M KCl)	440–5200	210	14	Short linear range, linear range starts from high concentration and LOD is higher than this work
16 CS/MNPs- rGO/GCE 0.49 vs SCE 60–11000 17 16 Short linear range, linear range starts from high concentration and LOD is higher than this work 17 N-GS/GCE 0.54 vs SCE 10–1300 5 17 Short linear range and LOD is higher than this work 18 CNHs- Nafion/GCE - 200000– 1000000 1800 18 Linear range starts from high concentration and LOD is higher than this work 19 f- SWCNT/PC4/G CE 0.623 vs SCE 99–5794 32 19 Short linear range, linear range starts from high concentration and LOD is higher than this work 20 MWCNT/MAM 0.56 vs /GCE 10–40800 5 20 LOD is higher than this work 21 Sol-gel 0.5 vs 113– 8210000 3.6 21 Linear range starts from high concentration and LOD is higher than this work 22 MWCNTs- GNPs /Au 0.5 vs 10–50000 3.3 22 LOD is higher than this work 23 PEDOT/GCE 0.5 vs Ag/AgCI 40000– 2000 23 Linear range starts from high concentration and LOD is higher than this work 24 f- manocomposite/a ptasensor - 100– 10000 20 25 Short linear range,	15	Tyr-NGP- Chi/GC	-0.1 vs Ag/AgCl (3 M KCl)	100–2000	33	15	Short linear range, linear range starts from high concentration and LOD is higher than this work
17N-GS/GCE0.54 vs SCE10–1300517Short linear range and LOD is higher than this work18CNHs- Nafion/GCE-20000- 1000000180018Linear range starts from high concentration and LOD is higher than this work19f- SWCNT/PC4/G0.623 vs SCE99–57943219Short linear range, linear range starts from high concentration and LOD is higher than this work20MWCNT/MAM0.56 vs (GCE10–40800520LOD is higher than this work21Sol-gel GNPs /Au0.5 vs electrode113- 82100003.621Linear range starts from high concentration and LOD is higher than this work22MWCNT/S- MIP/MWCNTs- GNPs /Au0.5 vs electrode10–500003.322LOD is higher than this work23PEDOT/GCE0.5 vs Ag/AgCI electrode10–500003.322Linear range starts from high concentration and LOD is higher than this work24f- MWCNTs/AuN Ps nanocomposite/a ptasensor-0.1–100.0524Short linear range, linear range starts from high concentration and LOD is higher than this work25PGA/MWCNT- NH2/GCE-100– 100002025Short linear range, linear range starts from high concentration and LOD is higher than this work	16	CS/MNPs- rGO/GCE	0.49 vs SCE	60–11000	17	16	Short linear range, linear range starts from high concentration and LOD is higher than this work
18 CNHs- Nafion/GCE - 200000- 1000000 1800 18 Linear range starts from high concentration and LOD is higher than this work 19 f- 0.623 vs SWCNT/PC4/G CE 99–5794 32 19 Short linear range, linear range starts from high concentration and LOD is higher than this work 20 MWCNT/MAM 0.56 vs /GCE 10–40800 5 20 LOD is higher than this work 21 Sol-gel GNPs /Au 0.5 vs electrode 113– 3.6 21 Linear range starts from high concentration and LOD is higher than this work 22 MWCNTs- GNPs /Au 0.5 vs electrode 10–50000 3.3 22 LOD is higher than this work 23 PEDOT/GCE 0.5 vs Ag/AgCl electrode 10–50000 3.3 22 LOD is higher than this work 24 f- MWCNTs/AuN Ps nanocomposite/a ptasensor - 0.1–10 0.05 24 Short linear range, linear range starts from high concentration and LOD is higher than this work 25 PGA/MWCNT- NH ₂ /GCE - 100– 10000 20 25 Short linear range, linear range starts from high concentration and LOD is higher than this work	17	N-GS/GCE	0.54 vs SCE	10-1300	5	17	Short linear range and LOD is higher than this work
19f- SWCNT/PC4/G CE0.623 vs SCE99–57943219Short linear range, linear range starts from high concentration and LOD is higher than this work20MWCNT/MAM /GCE0.56 vs SCE10–40800520LOD is higher than this work21Sol-gel MIP/MWCNTs- GNPs /Au0.5 vs Ag/AgCl electrode113– 82100003.621Linear range starts from high concentration and LOD is higher than this work22MWCNTs- PEI/GCE0.5 vs SCE10–500003.322LOD is higher than this work23PEDOT/GCE0.5 vs Ag/AgCl electrode40000- 4100002200023Linear range starts from high concentration and LOD is higher than this work24f- MWCNTs/AuN Ps nanocomposite/a ptasensor-0.1–100.0524Short linear range and LOD is higher than this work25PGA/MWCNT- NH2/GCE-100– 100002025Short linear range, linear range starts from high concentration and LOD is higher than this work	18	CNHs- Nafion/GCE	_	200000– 1000000	1800	18	Linear range starts from high concentration and LOD is higher than this work
20MWCNT/MAM /GCE0.56 vs SCE10–40800520LOD is higher than this work21Sol-gel MIP/MWCNTs- GNPs /Au0.5 vs Ag/AgCl electrode113– 82100003.621Linear range starts from high concentration and LOD is higher than this work22MWCNTs- PEI/GCE0.5 vs SCE10–500003.322LOD is higher than this work23PEDOT/GCE0.5 vs SCE40000– 4100002200023Linear range starts from high concentration and LOD is higher than this work24f- MWCNTs/AuN Ps nanocomposite/a ptasensor-0.1–100.0524Short linear range and LOD is higher than this work25PGA/MWCNT- NH2/GCE-100– 100002025Short linear range, linear range starts from high concentration and LOD is higher than this work	19	f- SWCNT/PC4/G CE	0.623 vs SCE	99–5794	32	19	Short linear range, linear range starts from high concentration and LOD is higher than this work
21Sol-gel MIP/MWCNTs- GNPs /Au0.5 vs Ag/AgCl electrode113- 82100003.621Linear range starts from high concentration and LOD is higher than this work22MWCNTs- PEI/GCE0.5 vs SCE10-500003.322LOD is higher than this work23PEDOT/GCE0.5 vs Ag/AgCl electrode40000- 4100002200023Linear range starts from high concentration and LOD is higher than this work24f- MWCNTs/AuN Ps nanocomposite/a ptasensor-0.1-100.0524Short linear range and LOD is higher than this work25PGA/MWCNT- NH2/GCE-100- 100002025Short linear range, linear range starts from high concentration and LOD is higher than this work	20	MWCNT/MAM /GCE	0.56 vs SCE	10-40800	5	20	LOD is higher than this work
22MWCNTs- PEI/GCE0.5 vs SCE10–500003.322LOD is higher than this work23PEDOT/GCE0.5 vs Ag/AgCl electrode40000– 4100002200023Linear range starts from high concentration and LOD is higher than this work24f- MWCNTs/AuN Ps nanocomposite/a ptasensor-0.1–100.0524Short linear range and LOD is higher than this work25PGA/MWCNT- NH2/GCE-100– 100002025Short linear range, linear range starts from high concentration and LOD is higher than this work	21	Sol-gel MIP/MWCNTs- GNPs /Au	0.5 vs Ag/AgCl electrode	113– 8210000	3.6	21	Linear range starts from high concentration and LOD is higher than this work
23 PEDOT/GCE 0.5 vs 40000- 22000 23 Linear range starts from high concentration and LOD is higher than this work 24 f- - 0.1-10 0.05 24 Short linear range and LOD is higher than this work 24 f- - 0.1-10 0.05 24 Short linear range and LOD is higher than this work ptasensor - 100- 20 25 Short linear range, linear range, linear range starts from high concentration and LOD is higher than this work 25 PGA/MWCNT- - 100- 20 25 Short linear range, linear range starts from high concentration and LOD is higher than this work	22	MWCNTs- PEI/GCE	0.5 vs SCE	10-50000	3.3	22	LOD is higher than this work
24 f- - 0.1-10 0.05 24 Short linear range and LOD is higher than this work Ps nanocomposite/a - 100- 20 25 Short linear range, linear range, linear range starts from high concentration and LOD is higher than this work 25 PGA/MWCNT- - 100- 20 25 Short linear range, linear range starts from high concentration and LOD is higher than this work	23	PEDOT/GCE	0.5 vs Ag/AgCl electrode	40000– 410000	22000	23	Linear range starts from high concentration and LOD is higher than this work
25 PGA/MWCNT- NH ₂ /GCE - 100- 10000 20 25 Short linear range, linear range starts from high concentration and LOD is higher than this work	24	f- MWCNTs/AuN Ps nanocomposite/a ptasensor	_	0.1–10	0.05	24	Short linear range and LOD is higher than this work
	25	PGA/MWCNT- NH ₂ /GCE	_	100– 10000	20	25	Short linear range, linear range starts from high concentration and LOD is higher than this work

26	GR-IL/GCE	0.48 vs Ag/AgCl electrode	20–2000	8	26	Short linear range, linear range starts from high concentration and LOD is higher than this work
27	LDH/GCE	0.454 vs SCE	10–1050	5	27	Short linear range and LOD is higher than this work
28	CTS-GR/CILE	0.436 vs SCE	100– 800000	26.4	28	Linear range starts from high concentration and LOD is higher than this work
29	ELDH/GCE	0.489 vs SCE	20–1510	6.8	29	Short linear range, linear range starts from high concentration and LOD is higher than this work
30	GR/Au-Tyr- CS/GCE	0.47 vs SCE	2.5–3000	1	30	Short linear range and LOD is higher than this work
31	Tyr-rGO- DAPPT/GCE	0.1 vs SCE	1–38000	0.35	31	LOD is higher than this work
32	TiO ₂ /Au NTAs	0.53 vs Ag/AgCl electrode	100-38900 (with UV light) and 100-28900 (without UV light)	6.2 (with UV light) and 47 (without UV light)	32	Linear range starts from high concentration and LOD is higher than this work
33	SWCNT- CD/GCE	0.543 vs SCE	10.8– 18500	1	33	Short linear range and LOD is higher than this work
34	Fe ₃ O ₄ -NPs- CB/GCE	0.542 vs SCE	0.1–50000	0.031	34	LOD is higher than this work
35	NGP/GCE	0.49 vs Ag/AgCl electrode	100– 50000	12.1	35	Linear range starts from high concentration and LOD is higher than this work
36	rGO-Hist	0.49 vs Ag/AgCl (3 M KCl)	upto 30000	0.03	This work	Practically usable linear range and very low LOD

References

- 1 Z. Zheng, Y. Du, Z. Wang, Q. Feng and C. Wang, *Analyst*, 2013, **138**, 693–701.
- 2 W. Huang, Bull. Korean Chem. Soc., 2005, 26, 1560–1564.
- 3 Y. Zhang, L. Wang, D. Lu, X. Shi, C. Wang and X. Duan, *Electrochim. Acta*, 2012, 80, 77–83.
- 4 H. Yin, L. Cui, Q. Chen, W. Shi, S. Ai, L. Zhu and L. Lu, *Food Chem.*, 2011, **125**, 1097–1103.
- 5 H. Yin, Y. Zhou and S. Ai, J. Electroanal. Chem., 2009, 626, 80–88.
- 6 X. Niu, W. Yang, G. Wang, J. Ren, H. Guo and J. Gao, *Electrochim. Acta*, 2013, **98**, 167–175.
- 7 H. Yin, Y. Zhou, J. Xu, S. Ai, L. Cui and L. Zhu, Anal. Chim. Acta, 2010, 659, 144–150.
- 8 X. Tu, L. Yan, X. Luo, S. Luo and Q. Xie, *Electroanalysis*, 2009, **21**, 2491–2494.
- 9 C. Huang, Y. Wu, J. Chen, Z. Han, J. Wang, H. Pan and M. Du, *Electroanalysis*, 2012, 24, 1416–1423.
- 10 C. Yu, L. Gou, X. Zhou, N. Bao and H. Gu, *Electrochim. Acta*, 2011, **56**, 9056–9063.
- D. Vega, L. Agüí, A. Gonzalez-Cortés, P. Yáñez-Sedeño and J. M. Pingarron, *Talanta*, 2007,
 71, 1031–1038.
- 12 D. G. Mita, A. Attanasio, F. Arduini, N. Diano, V. Grano, U. Bencivenga, S. Rossi, A. Amine and D. Moscone, *Bisens. Bioelectron.*, 2007, **23**, 60–65.
- 13 F. Wang, J. Yang and K. Wu, *Anal. Chim. Acta*, 2009, **638**, 23–28.
- G. F. Pereira, L. S. Andrade, R. C. Rocha-Filho, N. Bocchi and S. R. Biaggio, *Electrochim. Acta*, 2012, 82, 3–8.
- 15 L. Wu, D. Deng, J. Jin, X. Lu and J. Chen, *Bisens. Bioelectron.*, 2012, **35**, 193–199.
- Y. Zhang, Y. Cheng, Y. Zhou, B. Li, W. Gu, X. Shi and Y. Xian, *Talanta*, 2013, 107, 211–218.

- H. Fan, Y. Li, D. Wu, H. Ma, K. Mao, D. Fan, B. Du, H. Li and Q. Wei, *Anal. Chim. Acta*, 2012, 711, 24–28.
- 18 G. Xu, L. Gong, H. Dai, X. Li, S. Zhang, S. Lu, Y. Lin, J. Chen, Y. Tong and G. Chen, *Anal. Methods*, 2013, 5, 3328–3333.
- L. Zhang, Y.-P. Wen, Y.-Y. Yao, Z.-F. Wang, X.-M. Duan and J.-K. Xu, *Chin. Chem. Lett.*, 2014, 25, 517–522.
- 20 Y. Li, Y. Gao, Y. Cao and H. Li, Sens. Actuators, B, 2012, 171-172, 726-733.
- J. Huang, X. Zhang, Q. Lin, X. He, X. Xing, H. Huai, W. Lian and H. Zhu, *Food Control*, 2011, 22, 786–791.
- 22 Y. Yang, H. Zhang, C. Huang and N. Jia, Sens. Actuators, B, 2016, 235, 408–413.
- E. Mazzotta, C. Malitesta and E. Margapoti, Anal. Bioanal. Chem., 2013, 405, 3587–3592.
- 24 B. Deiminiat, G. H. Rounaghi, M. H. Arbab-Zavar and I. Razavipanah, *Sens. Actuators, B*, 2017, **242**, 158–166.
- Y. Lin, K. Liu, C. Liu, L. Yin, Q. Kang, L. Li and B. Li, *Electrochim. Acta*, 2014, 133, 492–500.
- 26 P. Jing, X. Zhang, Z. Wu, L. Bao, Y. Xu, C. Liang and W. Cao, *Talanta*, 2015, 141, 41–46.
- 27 H. Yin, L. Cui, S. Ai, H. Fan and L. Zhu, *Electrochim. Acta*, 2010, 55, 603–610.
- Q. Wang, Y. Wang, S. Liu, L. Wang, F. Gao, F. Gao and W. Sun, *Thin Solid Films*, 2012, 520, 4459–4464.
- 29 T. Zhan, Y. Song, Z. Tan and W. Hou, Sens. Actuators, B, 2017, 238, 962–971.
- 30 D. Pan, Y. Gu, H. Lan, Y. Sun and H. Gao, *Anal. Chim. Acta*, 2015, **853**, 297–302.
- R. Li, Y. Wang, Y. Deng, G. Liu, X. Hou, Y. Huang and C. Li, *Electroanalysis*, 2016, 28, 96–102.
- 32 L. Hu, C.-C. Fong, X. Zhang, L. L. Chan, P. K. S. Lam, P. K. Chu, K.-Y. Wong and M. Yang, *Environ. Sci. Technol.*, 2016, **50**, 4430–4438.
- 33 Y. Gao, Y. Cao, D. Yang, X. Luo, Y. Tang and H. Li, J. Hazard. Mater., 2012, 199, 111–118.

- C. Hou, W. Tang, C. Zhang, Y. Wang and N. Zhu, *Electrochim. Acta*, 2014, **144**, 324–331.
- 35 X. Yan, C. Zhou, Y. Yan and Y. Zhu, *Electroanalysis*, 2015, **27**, 2718–2724.