Supporting Information

A Thumb-Size Electrochemical System for Portable Sensors

Zhen Gu^a, Hui-Xin Liu^b, Yi-Lun Ying^a*, Guangli Xu^b, Yi-Tao Long^a*

^aKey Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

^b School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

Fabrication of the Screen Printed Electrdes

The SPE electrode pattern was printed onto the glass fiber plates though an automatic printing machine (AT-25P, ATMA Champ Ent. Co.). Silver ink (JT-1000, JVLONG Co. Ltd.) was firstly patterned on the substrate as conductive medium and cured at 100 °C for 10 min. Then the work electrode (planar area: 28.26 mm²) and counter electrode were printed by using carbon ink (EDAG 423SS, LOCTITE Co.) and dried at 90 °C for 10 min. The Ag/AgCl ink (JLL-1000, JVLONG Co. Ltd.) was printed as reference electrode. Finally, the insulating ink (TP-40, JINYI Co. Ltd.) was printed as the insulation layer. Fresh SPEs were used in the experiments without pretreatment.

Quantitative Determination of Cd²⁺ and Pb²⁺ in river water by the MiniEC

To evaluate the usefulness of the MiniEC in heavy metal detection, the river water sample was collected and analyzed for trace of Cd^{2+} and Pb^{2+} . Sample solutions were prepared using the river water with addition of acetate to a final concentration of 0.1 M. Pb(NO₃)₂ and Cd(NO₃)₂ was added into the sample solution for detection at different concentrations (0, 1, 2, 3, 5µg/L). The Bi-coated SPE was used after the calibration curves were measured (**Figure 5**). DPASV was used to determine the concentration of Cd²⁺ and Pb²⁺ in the sample solutions by using the same parameters as described in the manuscript (Figure S1). As a result, the river water spiked with a mixture of the Cd^{2+} and Pb^{2+} gave recoveries of 92.1-108.9% (Table S1). This demonstrated that the river water sample had virtually no effect on the performance of the method proposed.

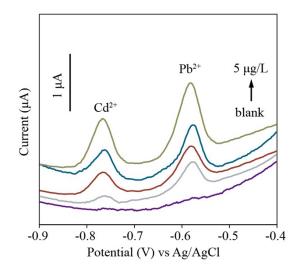


Figure S1. Voltammogram for Cd^{2+} and Pb^{2+} at different concentrations (0, 1, 2, 3, 5 $\mu g/L$) in river water

Table S1. Peak current of Cd²⁺ and Pb²⁺ in Figure S1 and the value of recovery.

Add amount	Peak current of	Recovery of Cd ²⁺	Peak current of	Recovery of Pb ²⁺
$(\mu g/L)$	$Cd^{2+}(\mu A)$	(%)	$Pb^{2+}(\mu A)$	(%)
1	0.1422	92.6	0.4153	108.9
2	0.3585	108.9	0.5729	101.1
3	0.4651	92.1	0.8121	108.0
5	0.8112	94.8	1.1915	106.1