Supplementary Information

Enantioselective Raman spectroscopy (esR) for distinguishing between the enantiomers of 2-butanol

Claudia C. Rullich¹ and Johannes Kiefer^{1,2}*

¹University of Bremen, Technische Thermodynamik, Badgasteiner Str. 1, 28359 Bremen, Germany.

²University of Bremen, MAPEX Center for Materials and Processes, 28359 Bremen, Germany.

Corresponding author. Phone: +49 421 218 64777. Email: jkiefer@uni-bremen.de

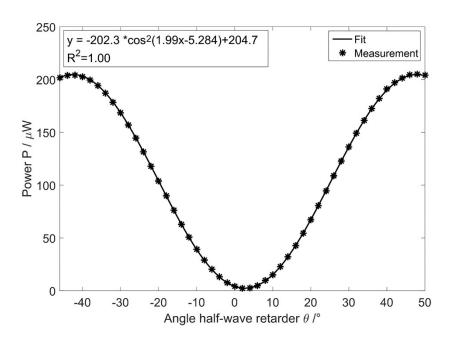


Figure S1. Calibration of orientation of half-wave Fresnel rhombus with a polarimeter set-up by fitting the measured values according to malus's law. The angular orientation at the intensity minimum (measured as power) is taken as 0.0° for the plane of incidence.

Table S1. Peak assignment of observed Raman peak positions and of observed ATR-IR peak positions of 2-Butanol in $cm^{-1}(sh = shoulder, str. = stretching, def. = deformation, sciss. = scissoring, rock. = rocking, wagg. = wagging, tors. = torsion, s = symmetric, as = asymmetric).$

Raman	IR	Assignment	Reference
wavenumber	wavenumber		
/cm ⁻¹	/cm ⁻¹		
407		skeletal	1
425 (sh)		skeletal	1
456		CCO def.,	2
		CCC def.	
518		CCO def.,	2
		CCC def.	
777	776	CH ₂ rock.	2
794 (sh)	794 (sh)	CC str.	2
821	821	$(C)_2$ C-O s str.	3
840 (sh)		CH ₂ rock.,	2
		CH ₃ rock.	
908	911	CC str., CH ₃	2
		rock.	
971 (sh)	968	-	
984	991	CC s str.,	2
		CH ₃ rock.,	
		CO s str.	
1023	1031	CCO s str.,	2, 4
		CH ₂ tors.	
1045 (sh)		CC str.	2
1097	1109	CCO as str.,	3
		CH ₃ rock.	
1114 (sh)	1120 (sh)	CCO as str.,	3
		CH ₂ rock.	
1145	1148	CH ₂ rock.	2
1166	1155 (sh)	CH ₂ rock.	2
1244	1254	CH ₂ wagg.,	2
		COH def.	
1282		CH ₂ wagg.,	2
		COH def.	
	1300	CH ₂ wagg.,	2
		COH def.	
	1326	CH sciss.	3
1338		CH sciss	3
1359		CH sciss.	3
	1375	CH ₃ s def.	2
1396		CH ₂ sciss.	2

	1415	CH ₂ sciss.	2
1433		CH ₃ as sciss.,	3
		CH ₂ sciss.	
	1458	CH ₃ as sciss.	3
		CH ₂ sciss.	
2721		Combination	2
	2861 (sh)	Overtone	2
2876	2881	CH ₂ s str	2
2887		CH ₃ s str	2
	2929	CH ₃ s str	2
2933	2934 (sh)	CH ₃ s str	2
2967	2969	CH ₂ as str.	2
		CH ₃ as str.	
3352	3344	OH str.	2

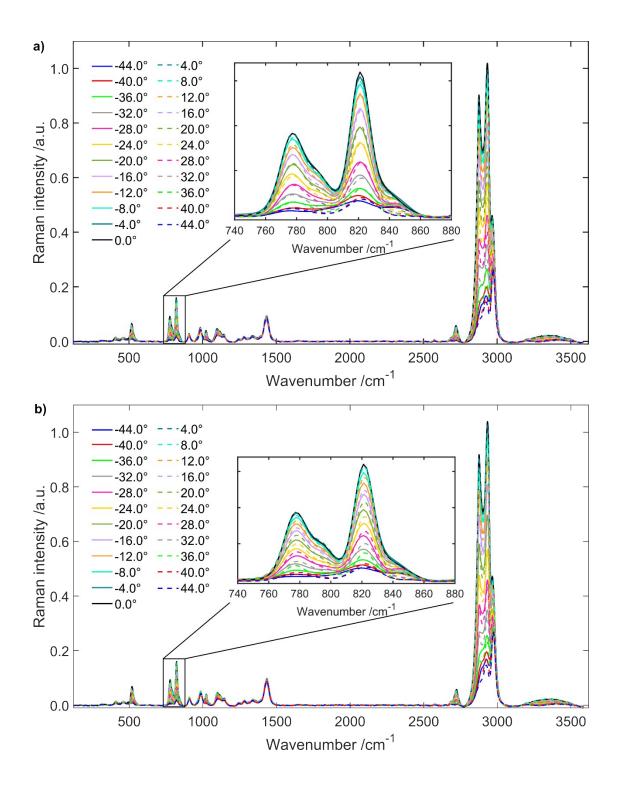


Figure S2. Retarder angle-resolved Raman spectra of (R)-(-)-2-butanol (a) and (S)-(+)-2-butanol (b) with $-44.0^{\circ} \le \theta \le +44.0^{\circ}$ in steps of 4.0° . The highlighted region around 800 cm⁻¹ contains the symmetric (C)₂C-O stretching vibration.

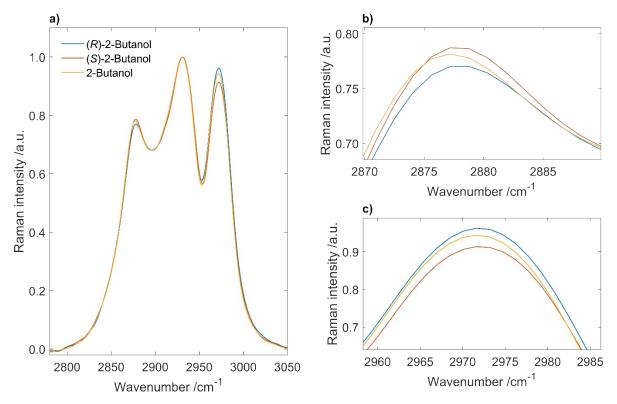


Figure S3. Enlarged Raman spectra of CH_2 and CH_3 -stretching vibrations (a), symmetric CH_2 and CH_3 stretching vibrations (b), asymmetric CH_3 stretching vibration (c)): Spectra were recorded with vertically polarized incident laser light, of (R)-(-)-2-butanol, (S)-(+)-2-butanol, and 2-butanol with $\theta = +32.0^{\circ}$. The full spectrum of each substance was normalized with respect to its strongest peak.

References

- 1. G. Socrates, *Infrared and Raman Characteristic Group Frequencies: Tables and Charts*, John Wiley & Sons Ltd, Chichester, third edn., 2001.
- 2. J. Kiefer, S. Wagenfeld and D. Kerlé, Spectrochim. Acta, Part A, 2018, 189, 57-65.
- 3. P. Larkin, *Infrared and Raman Spectroscopy: Principles and Spectral Interpretation*, Elsevier, Oxford, 2011.
- 4. S. L. Joa and J. E. Pemberton, *Langmuir*, 1992, **8**, 2301-2310.