Supporting Information for

Reusable Cyanide Sensing via Activation of C-H Group: Trifluoromethylcarbinol-directed *meta*-C-H Cyanomethylation of Naphthalimide

Yayun Chen, Xiaoxue Hu, Caihui Rao, Zheyao Li, Lu Chen, Chao Fu and Chuanxiang Liu *

School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai

201418, China

E-mail: cxliu@sit.edu.cn

Contents of Supporting Information

1. ¹ H-NMR, ¹³ C-NMR, ¹⁹ F-NMR and HRMS-ESI spectrum of 2a
2. ¹ H-NMR, ¹³ C-NMR and ¹⁹ F-NMR spectrum of the mixture of isomers 3
3. ¹ H-NMR, ¹³ C-NMR, ¹⁹ F-NMR and HRMS-ESI spectrum of <i>cis</i> - 3 and <i>trans</i> - 3
4. ¹ H-NMR, ¹³ C-NMR, ¹⁹ F-NMR and HRMS-ESI spectrum of 2b and 4
5. Molecular modeling calculations for 2a , <i>cis</i> - 3 , deprotonation of <i>cis</i> - 3 12
6. UV-vis titration of <i>cis</i> -3 with F^- and selective testing in CH ₃ CN
7. UV-vis interference experiments of cis - 3 toward CN^- in CH_3CN and CH_3CN - H_2O 13
8. Influence of pH on the absorbance of <i>cis</i> - 3 in CH ₃ CN-H ₂ O14
9. Emission spectra of titration of <i>cis</i> -3 with CN^- and selective testing in CH_3CN
10. Emission interference experiments of cis - 3 toward CN^- in CH_3CN and CH_3CN - H_2O 14
11. The fluorescence detection limit of cis - 3 with CN^- in CH_3CN - H_2O solution
12. Molecular modeling calculations for <i>trans</i> - 3 16
13. UV-vis absorbance spectra of <i>trans</i> -3
14. Fluorescence emission spectra of <i>trans</i> - 3

1. ¹H-NMR, ¹³C-NMR, ¹⁹F-NMR and HRMS-ESI spectrum of 2a

Figure S1. ¹H-NMR (CDCl₃, 500 MHz) spectrum of compound 2a

Figure S2. ¹⁹F-NMR (CDCl₃, 470 MHz) spectrum of compound 2a

			Mass Spectrum List Report						
Analysis Info						Acquisition Date	11/14/2017 4:03:59 PM		
Analysis Name	D:\E	Data\HYY\LCX	_000088.d						
Method	4_1	9_MassAccuN	eg			Operator			
Sample Name Comment	58					Instrument	solariX		
Acquisition Par	amete	er							
Polarity		Positive	n/a	n/a		No. of Laser Shots	200		
n/a		n/a	No. of Cell Fills	1		Laser Power	20.0 lp		
Broadband Low Ma	ass	53.8 m/z	n/a	n/a		n/a	n/a		
Broadband High M	ass	1000.0 m/z	n/a	n/a		n/a	n/a		
Acquisition Mode		Single MS	n/a	n/a					
Pulse Program		basic	n/a	n/a		Calibration Date	Fri Feb 21 02:36:54 2014		
Source Accumulati	on	0.020 sec	n/a	n/a		Data Acquisition Size	4194304		
Flight Time to Acq.	Cell	0.300 sec 0.001 sec	n/a n/a	n/a n/a		Apodization	Apodization		
Intens.			451.1	2465					
x100]			1						
2.0-									
1			1						
-									
4.5									
1.5-									
-			11						
-									
10-			11						
1.0									
1									
1									
0.5-									
1			202 10095						
-	150	37722	322.10085				970 25292		
0.01	150.	5/122		hund		736.53921	8/9.20203		
0.0-+	1	200	300 400	E00	000	700 80	0 000 m/z		

Figure S4. HRMS-ESI mass spectrum of compound 2a

2. ¹H-NMR, ¹³C-NMR and ¹⁹F-NMR spectrum of the mixture of isomers 3

Figure S5. ¹H-NMR (CDCl₃, 500 MHz) spectrum of the mixture of *cis*-3 and *trans*-3 (1:0.7)

Figure S6. ¹⁹F-NMR (CDCl₃, 470 MHz) spectrum of the mixture of *cis*-3 and *trans*-3 (1:0.7)

Figure S7. ¹³C-NMR (CDCl₃, 125 MHz) spectrum of the mixture of *cis*-3 and *trans*-3 (1:0.7)

3. ¹H-NMR, ¹³C-NMR, ¹⁹F-NMR and HRMS-ESI spectrum of *cis*-3 and *trans*-3

Figure S8. ¹H-NMR (CDCl₃, 500 MHz) spectrum of compound *cis-*3

Figure S10. ¹³C-NMR (CDCl₃, 125 MHz) spectrum of compound *cis*-3

Figure S14. ¹³C-NMR (CDCl₃, 125 MHz) spectrum of compound *trans*-3

Figure S15. HRMS-ESI mass spectrum of compound trans-3

4. ¹H-NMR, ¹³C-NMR, ¹⁹F-NMR and HRMS-ESI spectrum of 2b and 4

Analysis Info				Acquisition Date	3/16/2016 10:02:20 AM
Analysis Name D:	Data\HYY\CYW_	000007.d			
Aethod 4	19 MassAccuNe	g		Operator	
Sample Name 25		•		Instrument	solariX
Comment					
Acquisition Parame	ter				
Polarity	Positive	n/a	n/a	No. of Laser Shots	200
/a	n/a	No. of Cell Fills	1	Laser Power	20.0 lp
Broadband Low Mass	53.8 m/z	n/a	n/a	n/a	n/a
Broadband High Mass	1000.0 m/z	n/a	n/a	n/a	n/a
Acquisition Mode	Single MS	n/a	n/a		
Pulse Program	basic	n/a	n/a	Calibration Date	Fri Feb 21 02:36:54 201
Source Accumulation	0.010 sec	n/a	n/a	Data Acquisition Size	1048576
on Accumulation Time	0.200 sec	n/a	n/a	Apodization	Sine-Bell Multiplication
light Time to Acq. Cell	0.001 sec	n/a	n/a	Apodization	Apodization
Intens.		444.1	8219		
×107					
D					1. 1. 1. 1. 1. 1.
4					A 197 . 194
3-					12 M 18 1 1 1
2-				626 27629	
1-	222.09189			035.27526	
				713.32608	
-		the second s	the second se		

Mass Spectrum List Report

Figure S18. HRMS-ESI mass spectrum of compound 2b

Figure S19. ¹H-NMR (CDCl₃, 500 MHz) spectrum of compound 4

Figure S20. ¹³C-NMR (CDCl₃, 125 MHz) spectrum of compound 4

Figure S21. HRMS-ESI mass spectrum of compound 4

5. Molecular modeling calculations for 2a, cis-3, deprotonation of cis-3

		Bo	ond lengths		angles			
	H9-F1	H9-F2	O2/O1-H20A	O2/O1-H20B	C9-H9-F1	C9-H9-F2	C20-H20A-O2	C20-H20B-O2
2	2.26178	2.44729			118.90694	108.53560		
cis-3	2.25124	2.42559	2.42615	2.34624	119.41000	110.06837	90.56082	94.87512
Deprotonation	2.29849	2.40999	2.06244		118.77955	111.46043	122.21220	
of cis-3								

Figure S22. Equilibrium structure calculation of **2** (*a*) Face-on and (*b*) edge-on views; *cis*-**3** (*c*) Face-on and (*d*) edge-on views; deprotonation of *cis*-**3** (*e*) Face-on and (*f*) edge-on views.

6. UV-vis titration of cis-3 with F⁻ and selective testing in CH₃CN

Figure S23. (*a*) UV-visible titration of *cis*-**3** (20 μ M) with TBAF (0 to 2.7 equiv.) in CH₃CN. The inset shows the absorbance at 550 nm as a function of [F⁻]; (*b*) UV-visible spectra of *cis*-**3** (20 μ M) in the presence of different anions (ca.1.6 equiv) in CH₃CN; Inset: Color change of *cis*-**3** with different anions (from left to right: *cis*-**3** only, CN⁻, F⁻, Cl⁻, Br⁻, Γ , HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻).

7. UV-vis interference experiments of cis-3 toward CN⁻ in CH₃CN and CH₃CN-H₂O

Figure S24. (*a*) Interference experiments of *cis*-**3** (20 μ M) in CH₃CN for CN⁻ in the presence of other anions. The gray bars represent the emission at 550 nm of *cis*-**3** in the presence of 1.6 equiv. of the anion of interest (from 0 to 9: F⁻, Cl⁻, Br⁻, Γ , HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻). The red bars indicate the change that occurs upon subsequent addition of 1.6 equiv. of CN⁻ to the solution containing *cis*-**3** and the anion of interest; (*b*) Interference experiments of *cis*-**3** (20 μ M) in CH₃CN/H₂O (9:1, v/v) for CN⁻ in the presence of other anions. The gray bars represent the emission at 545 nm of *cis*-**3** in the presence of 80.0 equiv. of the anion of interest (from 0 to 9: F⁻, Cl⁻, Br⁻, Γ , HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻, S²⁻, SCN⁻). The red bars indicate the change that occurs upon subsequent addition of CN⁻ to the solution containing *cis*-**3** in the presence of 80.0 equiv. of the anion of interest (from 0 to 9: F⁻, Cl⁻, Br⁻, Γ , HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻, S²⁻, SCN⁻). The red bars indicate the change that occurs upon subsequent addition of 80.0 equiv. of CN⁻ to the solution containing *cis*-**3** and the anion of interest.

8. Influence of pH on the absorbance of cis-3 in CH₃CN-H₂O

Figure S25. Influence of pH on the absorbance at 550 nm of *cis*-**3** and *cis*-**3**+ CN^- in CH₃CN/H₂O (9:1, v/v).

9. Emission spectra of titration of *cis*-3 with CN⁻ and selective testing in CH₃CN

Figure S26. (*a*) Emission spectra of *cis*-**3** (20 μ M, $\lambda_{ex} = 337$ nm, in CH₃CN) upon addition of increasing concentrations of CN⁻ (as its TBA salt, 0 to 1.8 equiv). Inset: Plot of emission intensity ($\lambda_{em} = 378$ nm) versus TBACN concentration; (*b*) Fluorescence spectra of *cis*-**3** (20 μ M) in the presence of different anions (CN⁻, F⁻, Cl⁻, Br⁻, \Gamma, HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻) (ca. 1.8 equiv.) in CH₃CN.

Figure S27. (*a*) Fluorescence spectra of probe *cis*-**3** (20 μ M) in presence of various anion (1.8 equiv.) in CH₃CN solution. The gray bars represent the emission at 378 nm in the presence of 1.8 equiv. of the anion of interest (form 0 to 9: F⁻, Cl⁻, Br⁻, Γ , HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻). The red bars indicate the change that occurs upon subsequent addition of 1.8 equiv. of CN⁻ to the solution containing *cis*-**3** and the anion of interest; (*b*) Fluorescence spectra of probe *cis*-**3** (20 μ M) in presence of various anion (90.0 equiv.) in CH₃CN solution. The gray bars represent the emission at 388 nm in the presence of 90.0 equiv. of the anion of interest (form 0 to 11: F⁻, Cl⁻, Br⁻, Γ , HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻, S²⁻, SCN⁻). The red bars indicate the change that occurs upon subsequent addition of interest (form 0 to 11: F⁻, Cl⁻, Br⁻, Γ , HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻, S²⁻, SCN⁻). The red bars indicate the change that occurs upon subsequent addition of 90.0 equiv. of CN⁻ to the solution containing *cis*-**3** and the anion of 90.0 equiv. of CN⁻ to the solution containing *cis*-**3** and the anion of 90.0 equiv.

11. The fluorescence detection limit of *cis*-3 with CN⁻ in CH₃CN-H₂O solution.

Figure S28. Emission intensity ratio (F_{488}) of *cis*-**3** (20 μ M) as a function of CN⁻ concentration from 0-1800 μ M (0–90 equiv) in in CH₃CN/H₂O (9:1, v/v).

Equiation	Y = A + B * X	
Parameter	Value	Error
А	-1.99227	0.84379
В	0.17447	0.06093
R	SD	Ν

0.97446 0.03218 9	0.97446	0.03218	9
-------------------	---------	---------	---

The result of the analysis as follows:

Linear Equation: $Y = -1.99227 + 0.17447 \times X$, $R^2 = 0.94957$

 $S = 0.17447 * 10^6$, K = 3, $\delta = 0.0.03218$

 $LOD = K * \delta / S = 0.553 \,\mu M$

12. Molecular modeling calculations for trans-3

	Bond lengths				angles			
	H9-F1	H9-F2	O2/O1-H20A	O2/O1-H20B	C9-H9-F1	C9-H9-F2	C20-H20A-O2	C20-H20B-O2
trans-3	2.26034	2.44762	2.38258	2.38806	118.72137	108.25962	92.60166	92.30756

Figure S29. Equilibrium structure calculation of *trans*-3 (a) Face-on and (b) edge-on views.

13. UV-vis absorbance spectra of trans-3

Figure S30. (*a*) UV-visible titration of *trans*-**3** (20 μ M) with TBACN (0 to 1.2 equiv.) in CH₃CN. The inset shows the absorbance at 569 nm as a function of CN⁻; (*b*) UV-visible spectra of *trans*-**3** (20 μ M) in the presence of different anions (ca.1.2 equiv) in CH₃CN; Inset: Color change of *trans*-**3** with different anions (from left to right: *trans*-**3** only, CN⁻, F⁻, Cl⁻, Br⁻, Γ, HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻).

Figure S31. (*a*) UV-visible titration of *trans*-**3** (20 μ M) with TBACN (0 to 100.0 equiv.) in CH₃CN/H₂O (9:1, v/v). The inset shows the absorbance at 559 nm as a function of CN⁻; (*b*) UV-visible spectra of *trans*-**3** (20 μ M) in the presence of different anions (ca.100.0 equiv) in CH₃CN/H₂O (9:1, v/v); Inset: Color change of *trans*-**3** with different anions (from left to right: *trans*-**3** only, CN⁻, F⁻, Cl⁻, Br⁻, \Gamma, HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻, S²⁻, SCN⁻).

Figure S32. (*a*) Interference experiments of *trans*-**3** (20 μ M) in CH₃CN for CN⁻ in the presence of other anions. The gray bars represent the emission at 569 nm of *trans*-**3** in the presence of 1.2 equiv. of the anion of interest (from 0 to 9: F⁻, Cl⁻, Br⁻, Γ , HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻). The red bars indicate the change that occurs upon subsequent addition of 1.2 equiv. of CN⁻ to the solution containing *trans*-**3** and the anion of interest; (*b*) Interference experiments of *trans*-**3** (20 μ M) in CH₃CN/H₂O (9:1, v/v) for CN⁻ in the presence of other anions. The gray bars represent the emission at 559 nm of *trans*-**3** in the presence of 100.0 equiv. of the anion of interest (from 0 to 9: F⁻, Cl⁻, Br⁻, T, HSO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻, S²⁻, SCN⁻). The red bars indicate the change that occurs upon subsequent addition of interest (from 0 to 9: F⁻, Cl⁻, Br⁻, T, HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻, S²⁻, SCN⁻). The red bars indicate the change that occurs upon subsequent addition of 100.0 equiv. of CN⁻ to the solution containing *trans*-**3** and the anion of 100.0 equiv. of CN⁻ to the solution containing *trans*-**3** and the anion of 100.0 equiv.

Figure S33. UV-visible titration of *trans*-**3**+CN⁻ (20 μ M) with TFA (0 to 1.2 equiv.) in CH₃CN. The inset shows the absorbance at 569 nm as a function of TFA.

Figure S34. (*a*) Relative UV-visible absorbance during the titration of *trans*-**3** with CN⁻ and H⁺ (TFA) in CH₃CN; (*b*) visual color after each sequential addition of CN⁻ and H⁺ (TFA) in CH₃CN.

Figure S35. Influence of pH on the absorbance at 559 nm of *trans*-**3** and *trans*-**3**+ CN^{-} in CH₃CN/H₂O (9:1, v/v).

14. Fluorescence emission spectra of trans-3

Figure S36. (*a*) Emission spectra of *trans-***3** (20 μ M, λ_{ex} = 335 nm, in CH₃CN) upon addition of increasing concentrations of CN⁻ (as its TBA salt, 0 to 1.4 equiv). Inset: Plot of emission intensity (λ_{em} = 382 nm) versus TBACN concentration; (*b*) Fluorescence spectra of *trans-***3** (20 μ M) in the presence of different anions (CN⁻, F⁻, Cl⁻, Br⁻, Γ, HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻) (ca. 1.4 equiv.) in CH₃CN.

Figure S37. (*a*) Emission spectra of *trans-***3** (20 μ M, λ_{ex} =335 nm, in CH₃CN/H₂O (9:1, v/v)) upon addition of increasing concentrations of CN⁻ (as its TBA salt, 0 to 120.0 equiv). Inset: Plot of emission intensity (λ_{em} = 382 nm) versus TBACN concentration; (*b*) Fluorescence spectra of *trans-***3** (20 μ M) in the presence of different anions (CN⁻, F⁻, Cl⁻, Br⁻, Γ, HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻, S²⁻, SCN⁻) (ca. 120.0 equiv) in CH₃CN/H₂O (9:1, v/v).

Figure S38. (*a*) Fluorescence spectra of probe *trans*-**3** (20 μ M) in presence of various anion (1.4 equiv.) in CH₃CN solution. The gray bars represent the emission at 382 nm in the presence of 1.4 equiv. of the anion of interest (form 0 to 9: F⁻, Cl⁻, Br⁻, Γ , HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻). The red bars indicate the change that occurs upon subsequent addition of 1.4 equiv. of CN⁻ to the solution containing *trans*-**3** and the anion of interest; (*b*) Fluorescence spectra of probe *trans*-**3** (20 μ M) in presence of various anion (120.0 equiv.) in CH₃CN/H₂O (9:1, v/v) solution. The gray bars represent the emission at 382 nm in the presence of 120.0 equiv. of the anion of interest (form 0 to 11: F⁻, Cl⁻, Br⁻, Γ , HSO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻, S²⁻, SCN⁻). The red bars indicate the change that occurs upon subsequent addition of 120.0 equiv. of the anion of interest (form 0 to 11: F⁻, Cl⁻, Br⁻, Γ , HSO₄⁻, H₂PO₄⁻, AcO⁻, BF₄⁻, NO₃⁻, ClO₄⁻, S²⁻, SCN⁻). The red bars indicate the change that occurs upon subsequent addition of 120.0 equiv. of CN⁻ to the solution containing *trans*-**3** and the anion of interest.