Supplementary information

Aptamer Immobilization on Amino Functionalized Metal Organic Frameworks: An Ultrasensitive Platform for Electrochemical Diagnostic of *Escherichia coli O157:H7*

Saeed Shahrokhian^{1,2*}, Saba Ranjbar¹

¹Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran ²Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran

TABLE AND FIGURE CAPTIONS

Scheme S1. Schematic illustration of interaction between PANI/MOF and amine modified aptamer with GA as cross linking agent.

Table S1. Comparison the analytical performance of presented electrochemical aptasensor for

 E. coli O157:H7 detection.

 Table S2. Recovery tests for E. coli O157:H7 in different water samples.

Fig S1. The effect of PBS in DPV response of 20 μ M MB (in 20 mM Tris-HCl, pH 7.4) for aptasensor, (a) aptasensor incubated in 20 μ M MB, (b) aptasensor incubated in 20 μ M MB and immersed in PBS (0.1M, pH= 7.4) and (c) aptasensor incubated in 20 μ M MB, immersed in PBS (0.1M, pH= 7.4) and incubated in 2.1×10⁴ CFU mL⁻¹ *E. coli O157:H7*.

Fig S2. Secondary structure of E. coli O157:H7 DNA aptamer predicted by mfold program.

Fig S3. Interaction of aptamer with some *E. coli O157:H7* specific epitopes determined with HEX.8.0.0 software (A) metalloprotein, (B) UPF0209 protein and (C) effector protein.

Fig S4. EDS analysis of (A) Cu-MOF, (B) PANI and (C) PANI/MOF.

Fig S5. (A) Results of cyclic voltammograms (Scan rate, 100 mVs⁻¹) and (B) Nyquist plots of 0.1 M KCl containing 5 mM $Fe(CN)_6^{3-/4-}$ in GA immobilization step.

Fig S6. (A) DPV signal for 20 μ M of MB at Apt/GA/PANI/GCE, (B) bar chart of peak current change in presence and absence of MOF, (C) DPV signal for 20 μ M of MB at Apt/PANI/MOF/GCE and (D) bar chart of peak current change in presence and absence of GA.

Fig S7. The plot of $\Delta I_{p, MB}$ obtained with DPV technique for 20 μ M MB versus PANI/MOF suspension volume in presence of 2.1×10⁴ CFU mL⁻¹ *E. coli O157:H7*.

Fig S8. (A) DPV signal recorded for aptasensor at various MB capture time and (B) the plot of $I_{p, MB}$ versus MB capture time.

Fig S9. (A) DPV signal recorded for aptasensor at various MB concentrations and (B) the plot of $I_{p, MB}$ versus MB concentration.

Fig S10. The plot of $\Delta I_{p, MB}$ obtained with DPV technique for 20 μ M MB versus *E. coli* O157:H7 (2.1×10⁴ CFU mL⁻¹).

Fig S11. Bar chart for illustrate the regeneration of aptasensor in presence of 2M NaCl.

Fig S12. Evaluation the selectivity of purposed aptasensor for *E. coli O157:H7* compared to the other bacteria strains.

Fig S13. Images of LB agar plates containing cultured E. coli O157:H7.

Fig S14. (A) FESEM images and (B) EDS analysis for synthesized AgNPs.

Fig S15. Optical microscope images of (a) *E. coli O157:H7*, (b) AgNPs treated *E. coli O157:H7* and (c) ampicillin treated *E. coli O157:H7*.

Fig S16. DLS analyses of (a) monodispersed AgNPs and (b) aggregated AgNPs with *E. coli O157:H7*.

Scheme S1

Table	S1
-------	-----------

Purposed Biosensor	Detection Method	LDR CFU mL ⁻¹	LOD CFU mL ⁻¹	Analyze Time (min)	Reference
Aptamer/ SWCNT	Potentiometric	$1 - 10^{3}$	1	NR	24
AgBrNPs/3DNGH	Electrochemiluminesence	0.5-500	0.17	40	37
Aptamer/3D- IDEA	Impedimetric	10 ¹ - 10 ⁶	2.9×10 ²	30	38
Aptamer/PANI/M OF/GCE	Differential pulse voltammetry	2.1×10 ¹ -2.1×10 ⁷	2	40	This work

LDR: Linear dynamic range, LOD: Limit of detection, SWCNT: Single-walled carbon nanotube, 3D-IDEA: threedimensional interdigitated electrode array, AgBrNPs: AgBr nanoparticles, 3DNGH: 3D nitrogen-doped graphene hydrogel, NR: not reported

Table S2

Sample	Spiked (CFU mL ⁻¹)	Found (CFU mL ⁻¹) ^a	RSD (%) (n=3)	Recovery (%)
Tap Water	2.1×10 ³	2.38×10 ³	4.94	113.6
Mineral Water	2.1×10 ³	2.00×10 ³	2.57	95.3
Well Water	2.1×10 ³	1.80×10 ³	10.7	87.0
Paddy Water	2.1×10 ³	1.54×10 ³	2.15	73.2

Fig. S1

Fig. S2

Fig. S3

Fig. S4

Fig. S5

Fig. S6

Fig. S7

Fig. S8

Fig. S9

Fig. S10

Fig. S11

Fig. S12

Fig. S13

Fig. S14

Fig. S15

Fig. S16