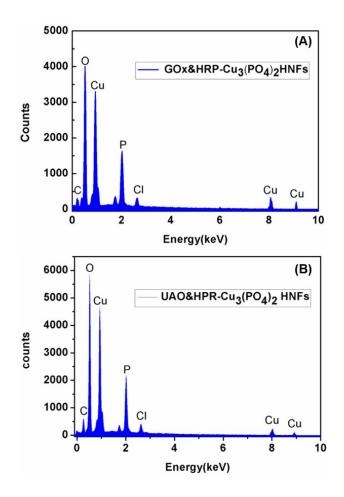
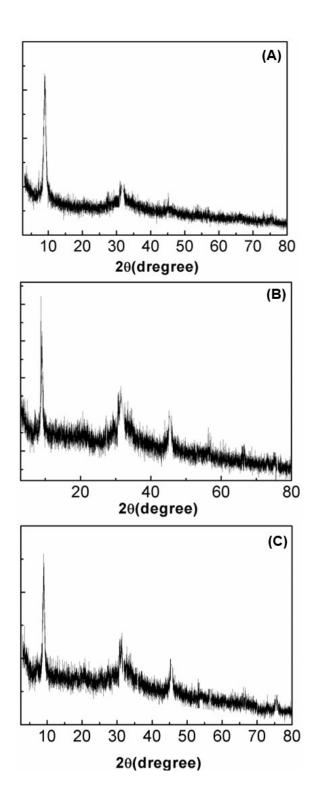
Electronic Supplementary Information

A Multiplex Paper-Based Nanobiocatalytic System for Simultaneous Determination of Glucose and Uric Acid in Whole Blood

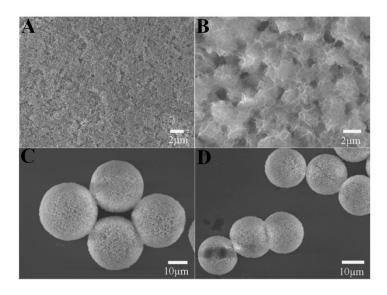
Jin Huang, Xue-Li Zhu, Yu-Min Wang, Jian-Hui Ge, Jin-Wen Liu* and Jian-Hui Jiang*

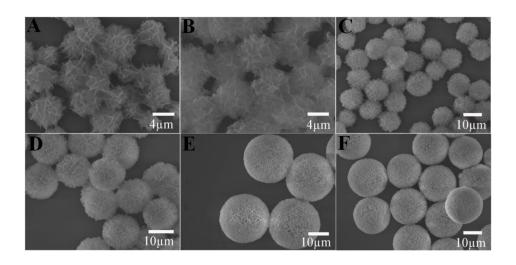

Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China

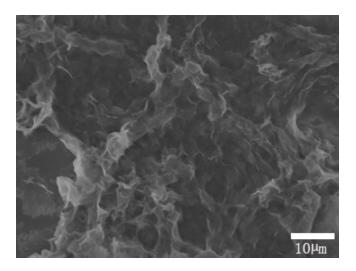
*Corresponding author:

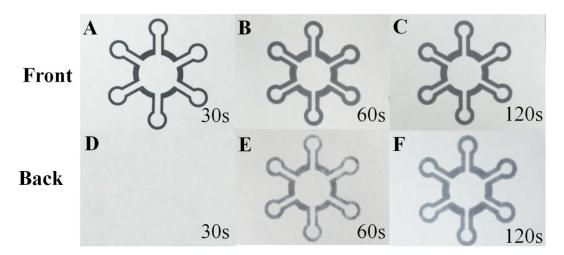

Tel.: 86-731-88821916, Fax: 86-731-88821916

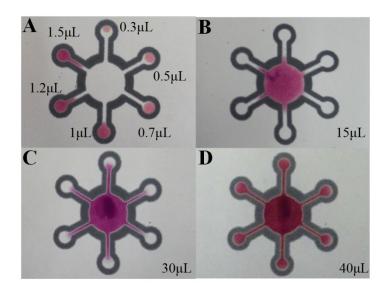
E-mail addresses: jinwenliu@hnu.edu.cn, jianhuijiang@hnu.edu.cn

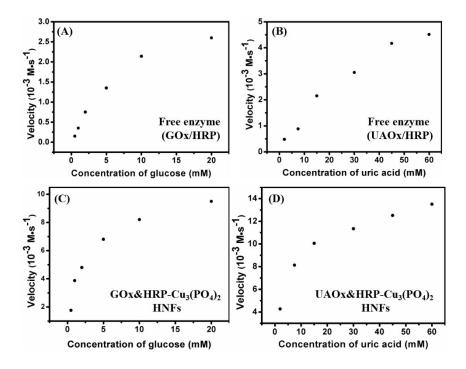

Fig. S1. EDX of (A) GOx&HRP-Cu₃(PO₄)₂ HNFs, (B) UAO&HRP-Cu₃(PO₄)₂ H NFs.


Fig. S2. XRD of (A) $Cu_3(PO_4)$, (B) $GOx\&HRP-Cu_3(PO_4)_2$ HNFs, (C) UAO&H $RP-Cu_3(PO_4)_2$ HNFs.


Fig. S3. SEM images of UAO&HRP-Cu₃(PO₄)₂ HNFs at different concentration of UAO (A) $0.0~mg\cdot mL^{-1}$, (B) $0.5~mg\cdot mL^{-1}$, (C) $1.0~mg\cdot mL^{-1}$ and (D) $2.0~mg\cdot mL^{-1}$.


Fig. S4. Growing mechanism of UAO&HRP-Cu₃(PO₄)₂ HNFs. (A-F) SEM images of UAO&HRP-Cu₃(PO₄)₂ HNFs after growing for (A) 6 h, (B) 12 h, (C) 24 h, (D) 36 h, (E) 48 h and (F) 72 h. The diameter for nanoflowers obtained in different cases is about 4 μ m, 8 μ m, 12 μ m, 16 μ m, 20 μ m and 22 μ m, respectively.


Fig. S5. SEM images of as-prepared UAO&HRP dual-enzyme hybrid nanoflowers in absence of CuSO₄.


Fig. S6. Optimization of wax melting time of uPADs with duration of 30 s, 60 s, and 120 s for the front and the back.

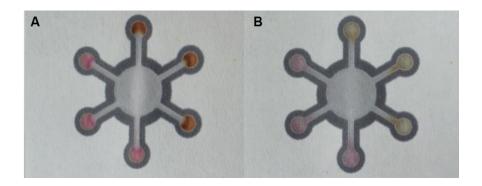

Fig. S7. Optimization of reagent volumes in detecting zone (A) and sample volumes in central zone (B, C, D). All channels were fabricated to be a 6 mm at length and 3 mm at width. And their diameter values for detection zone and central zones were 6 and 15 mm, respectively.

Fig. S8. Steady-state kinetics assay of free enzymes (without copper) and GOx&HRP- $Cu_3(PO_4)_2$ and UAOx&HRP- $Cu_3(PO_4)_2$ hybrid nanoflowers (HNFs). Reaction velocity are plotted with various glucose concentrations (A and C) and various uric acid concentrations (B and D).

Fig. S9. Photograph of μ PADs used for detection of 2 mM glucose and 2 mM uric acid with GOx&HRP-Cu₃(PO₄)₂ and UAOx&HRP-Cu₃(PO₄)₂ nanoflowers prepared using different reaction times. (A) 24 h, (B) 48 h.

Fig. S10. (A) Effects of pH on the catalytic activities of $GOx\&HRP-Cu_3(PO_4)_2$ (black column) and $UAOx\&HRP-Cu_3(PO_4)_2$ HNFs (gray column); (B) Effects of different buffers on the catalytic activities of $GOx\&HRP-Cu_3(PO_4)_2$ (black column) and $UAOx\&HRP-Cu_3(PO_4)_2$ HNFs (gray column).

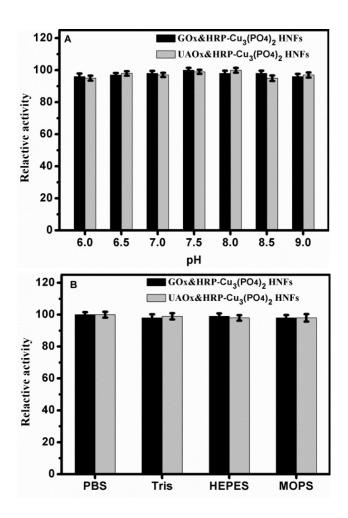
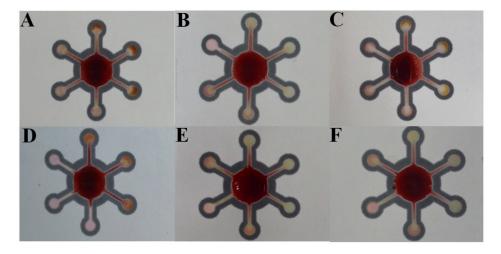
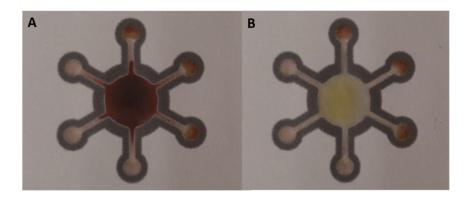




Fig. S11. Image of μ PADs used for the detection of glucose and uric acid in the whole blood samples. The whole blood samples all were diluted 5 times for detection of glucose and uric acid.

Fig. S12. Comparison of analysis performance of the nanoflower-based μ PADs for glucose and uric acid detection in the whole blood (A) and serum samples (B). Before testing glucose and uric acid in serum sample, anticoagulant was first added in the same whole blood to prevent blood clotting and then serum sample was obtained by centrifugation.

Table S1. Comparison of the apparent Michaelis-Menten constant (K_m) and maximum reaction rate (V_{max}) of the catalytic reaction between GOx&HRP-Cu₃(PO₄)₂ and UAOx&HRP-Cu₃(PO₄)₂ hybrid nanoflowers and free enzymes (without copper).

Catalyst	Substrate	K _m (mM)	V _{max} (M/s)
Free enzyme (GOx/HRP)	Glucose	5.5	3.3 × 10 ⁻³
GOx&HRP-Cu ₃ (PO ₄) ₂ HNFs	Glucose	1.7	9.5 × 10 ⁻³
Free enzyme (UAOx/HRP)	Uric acid	15.1	3.9 × 10 ⁻³
UAOx&HRP-Cu ₃ (PO ₄) ₂ HNFs	Uric acid	4.2	13.2 × 10 ⁻³

Table S2. Effects of zeta potential on the catalytic activities of GOx&HRP-Cu₃(PO₄)₂ and UAOx&HRP-Cu₃(PO₄)₂ HNFs. "I" refers to the gray intensity response of the glucose or uric acid; " I_0 " refers to the gray intensity response of blank sample. The concentration of glucose and UA are 0.2 and 1mM, respectively.

Dual-enzyme hybrid	Reaction Time (h)	Zeta potential (mV)	Catalytic activity
nanoflowers	(11)		$((I-I_0)/I_0)$
	12	-15.2	0.374
GOx&HRP-Cu ₃ (PO ₄) ₂	24	-23.4	0.517
HNFs	36	-16.72	0.439
	48	-15.97	0.396
	12	-6.73	0.386
UAO&HRP-Cu ₃ (PO ₄) ₂	24	-8.81	0.547
HNFs	36	-6.9	0.456
	48	-5.92	0.332

Table S3. Comparison of analytical performance of some assays for glucose and uric acid detection.

		1				
Analysis methods	Object	Sensing time	Sensing range	LOD	References	
Electrochemical	glucose	Not given	Not given	100 nM	S1	
analysis	uric acid	Not given	Not given	100 nM	51	
Electrochemical	glucose	Not given	0.08-5 mM	0.03 mM	92	
analysis	H_2O_2	Not given	0.075–10 mM	0.041 mM	S2	
Electrochemical	glucose	3-4 s	2.25-30 mM	2.25 mM	5 mM S3	
analysis	uric acid	4-5 s	400–930 μΜ	400 μΜ	33	
Electrochemical	glucose	Not given	0-1 mM	0.18 mM	S4	
analysis	uric acid	Not given	0-1 mM	0.11 mM	54	
Electrochemical	glucose	Not given	0.42-50 mM	0.14 mM	Q.F.	
analysis	uric acid	Not given	1.4-47 mM	0.52 mM	S5	
Colorimetry	glucose	Not given	4.5-5.8 mM	23 μΜ	96	
analysis	uric acid	Not given	130–380 μΜ	37 μΜ	S6	
Colorimetry	glucose	30 min	0.3-1.0 mM	0.213 mM	97	
analysis	uric acid	30 min	0.3-1.0 mM	0.287 mM	S7	
Colorimetry	glucose	Not given	0-12 mM	0.7 mM	CO	
analysis	uric acid	Not given	0-5 mM	0.3 mM	- S8	
Colorimetry	glucose	10 min	0.5–20 mM	0.5 mM	GO.	
analysis	uric acid	10 min	0.1–7 mM	0.1 mM	S9	
EDETl	glucose	10 min	0.1-1.0 μΜ	0.05 mM	C10	
FRET probes	uric acid	10 min	25–500 nM	0.025 mM	S10	
GQDs-based	glucose	60 min	$0.1-30 \; \mu M$	0.021 μΜ)21 μΜ	
fluorescent probe	uric acid	60 min	0.1 –45 μM	0.026 μΜ	S11	
Microfluidic	glucose	10 min	1.0-100 μM	0.1 μΜ		
thread-based analytical device	uric acid	10 min	10-100 μΜ	3 μΜ	S12	
Paper-based nanobiocatalytic	glucose	5 min	0.1–2 mM	60 μΜ		
system	uric acid	5 min	0.1-10 mM	25 μΜ	This work	

Table S4. Stability of our devices was kept at room temperature (25 °C). Background signals were obtained by spotting 0.1 M phosphate buffer solution while standard test signals were obtained by spotting 2 mM glucose and 8 mM uric acid. The grayscale values were used to analyze the color intensity and gradient by Image J software.

Standard test	Storage for 8 temperatu	days at room are (25 °C)	Storage for 12 days at room temperature (25 °C)	
	Image of µPADs	Grayscale image	Image of µPADs	Grayscale image
Standard sample	Z/K	XX	Z/K	ZK
Hybird nanoflowers	The	ZX	数	Z/Z
Standard sample	The same	ZK	The same	ZZ
Free GOx and HRP	The same	2K	The	ZK

Table S5. The simultaneous detection of glucose and uric acid in human whole blood.

Samples		Certified concentration (mM)	Our propsed method (mM)	RSD (n=3, %)
Blood sample A	glucose	9.87	9.81	3.1
	uric acid	0.23	0.19	3.5
Blood sample B	glucose	3.50	3.22	4.1
	uric acid	0.46	0.41	3.6
Blood sample C	glucose	6.42	6.34	3.4
	uric acid	0.35	0.38	3.0
Blood sample D	glucose	7.23	7.15	3.6
	uric acid	0.29	0.25	4.5
Blood sample E	glucose	2.30	2.92	3.3
	uric acid	0.33	0.34	3.5
Blood sample F	glucose	3.50	3.18	4.2
	uric acid	0.58	0.54	3.2

Notes and references

- [S1] C. Xiong, T. Zhang, W. Kong, Z. Zhang, H. Qu, W. Chen, Y. Wang, L. Luo and L Zheng, Biosens. Bioelectron., 2018, 101, 21-28.
- [S2] C. Liu, D. Wang and C. Zhang, Sens. Actuators B, 2018, 270, 341-352.
- [S3] Guo J, Ma X. Biosens. Bioelectron., 2017, 94, 415-419.
- [S4] W. Xu, K. Fu and P. W. Bohn, ACS Sens., 2017, 2, 1020-1026.
- [S5] J. Yu, L. Ge, J. Huang, S. Wang and S. Ge, Lab Chip, 2011, 11, 1286-1291.
- [S6] E. F. Gabriel, P. T. Garcia, T. M. Cardoso, F. M. Lopes, F. T. Martins and W. K. Coltro, Analyst, 2016, 141, 4749-4756.
- [S7] X. Chen, J. Chen, F. Wang, X. Xiang, M. Luo, X. Ji and Z. He, *Biosens. Bioelectron.*, 2012, 35, 363-368.
- [S8] P. de Tarso Garcia, T. M. G. Cardoso, C. D. Garcia, E. Carrilho and W. K. T. Coltro, *RSC Adv.*, 2014, 4, 37637-37644.
- [S9] W. Dungchai, O. Chailapakul and C. S. Henry, Anal. Chim. Acta., 2010, 674, 227-233.
- [S10] X. Huang, T. Lan, B. Zhang and J. Ren, *Analyst*, 2012, **137**, 3659-3666.
- [S11] H. Liu, X. Li, M. Wang, X. Chen and X. Su, Anal. Chim. Acta., 2017, 990, 150-156.
- [S12] F. Lu, Q. Mao, R. Wu, S. Zhang, J. Du and J. Lv, Lab Chip, 2015, 15, 495-503.