Supporting Information

Probing Propeller-Like Loops of DNA G-quadruplexes with Looped-Out 2-Aminopurine for Label-Free Switchable Molecular Sensing

Pai Peng, Yi Du, Yudie Sun, Shuangna Liu, Lan Mi and Tao Li* Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); E-mail: tlitao@ustc.edu.cn

Table of Contents

I. Supplementary figures and discussion

II. Materials

III. References

I. Supplementary figures and discussion

Figure S1. Influence of adjacent loop residues including (A) cytosines and (B) guanines on the fluorescence of looped-out 2-AP in DNA duplexes.

Figure S2. Fluorescence spectra of 2-AP in parallel and antiparallel folded FG9A stabilized by K⁺ and Na⁺ respectively.

Figure S3. Effect of Pb²⁺ on the fluorescence of looped-out 2-AP in duplex

Figure S4. Fluorescence spectra of 2-AP in propeller-like loop and lateral loop by folding FG5A with different ions.

Figure S5. Fluorescence analysis of 2-AP in different loops of parallel G-quadruplexes. (A) Illustration of 2-AP in the first loop (FG6A), the second loop (FG10A) and the third loop (FG14A) in parallel G-quadruplexes. (B) fluorescence spectra (C) CD spectra of 2-AP in each loop.

We further tested whether the fluorogenic 2-AP containing loop is applicable to determine any one of the three propeller-like loops in parallel G-quadruplex. We designed three sequences (FG6A, FG10A, FG14A) adapted from PW17¹, of which each sequence contains a three-base loop when the parallel G-quadruplex is formed in the presence of K⁺ (Figure S5A). Similaily, the positive band around 265 nm and the negative one near 245 nm in CD spectra (Figure S5B) in the presence of K⁺ show that all the three G-quadruplexes adopt parallel conformation, proving the existence of propeller-like loops in these G-quadruplexes. We next explored the fluorescence performance of 2-AP from the first propeller-like loop to the third one. Indeed, the fluorescence intensity of 2-AP in each loop is around 300 a.u., much the same as that of the 3-base propeller-like loop (Figure S5C vs. Figure 5B), demonstrating that the fluorogenic 2-AP-containing loop is applicable to any one of the three propeller-like loops in parallel G-quadruplex, providing the possibilities to identify G-quadruplex folding topology in human telomeric (3+1) G-quadruplex.

Figure S6. Solvent effect of PEG 200 on the fluorescence properties of the 2-AP incorporated G-quadruplex forming strand (A) In the absence and (B) presence of K⁺.

Our presented method is in principle applicable to fast identifying the parallel conformation of human telomeric G-quadruplex by illustrating that all loops are the double-chain reversal. The parallel-stranded human telomeric G-quadruplex has been reported able to be induced from the hybrid type by 40% PEG-200 under molecular crowding conditions in the presence of K⁺, reflected by a sharp increase in the 2-AP fluorescence.² However, we find that the fluorescence of 2-AP gradually increases with increasing concentrations (0–80%) of PEG-200, independent of cations (Figure S6). Given that 2-AP is greatly influenced by the polarity of the solvent,³⁻⁶ our observations strongly suggest that the fluorescence change upon addition of PEG-200 mainly originates from the solvent effect rather than the structure conversion of

the G-quadruplex. Although the CD spectra were also measured in the absence and presence of PEG-200,² it cannot be used alone as a definitive tool for G-quadruplex structural classification,⁷ as CD only reports on base stacking environment rather than strand polarity and thus causes false positive results.⁷⁻¹⁰

Figure S7. Application of this G-quadruplex probe to the analysis of K⁺ in freshly collected lake water. (A) Fluorescence emission spectra of fluorogenic FG9A by adding increasing concentrations of K⁺ (0 to 200 mM) into the working system. (B) Relationship between the fluorescence intensity of 2-AP at 370 nm and the K⁺ concentration. The inset shows a linear relationship in the concentration range of K⁺ from 0.2 mM to 2 mM. Error bar represents the standard deviation (n = 3).

Method	Detection limit	Linear range
PPIX binding K ⁺ -stabilized parallel G-quadruplex ¹¹	0.5 mM	2–20 mM
G-quadruplex lighting up thioflavin T for "turn on" detection of K^{+12}	1 mM	0.1–20 mM
pyrene-labeled aptamer ¹³	0.4 mM	0–20 mM
fluorescein-labeled G-quadruplex ¹⁴	~mM	2–10 mM
this work	25 μΜ	0.1–2 mM

Table S1. Comparison with other G-quadruplex based fluorescent method for K⁺ detection.

II. Materials

Oligonucleotide sequences

Figure S8. DNA sequences of 2-AP loop in duplex study.

Table S2	. The DNA	sequences	of 2-AP lo	ni qoc	duplex study.
10010		0094011000	01 - 7 11 10		aupion olaay.

Name	Sequence (5'-3')
Cytosine-Duplex-2AP	CCTTTCCCCTTCTTTCCA _p CCTTTCTTCCCCTTTCC
Cytosine-Duplex-c0	GGAAAGGGGAAGAAAGGTGGAAAGAAGGGGAAAGG
Cytosine-Duplex-c1	GGAAAGGGGAAGAAAGGGGAAAGAGGGGAAAGG
Cytosine-Duplex-c2	GGAAAGGGGAAGAAAGGGAAAGGGGAAAGG
Cytosine-Duplex-c3	GGAAAGGGGAAGAAAGGAAAGGGGGAAAGG
Cytosine-Duplex-c4	GGAAAGGGGAAGAAAGAAGAAGGGGAAAGG
Cytosine-Duplex-c5	GGAAAGGGGAAGAAAAAAGAAGGGGAAAGG
Thymine-Duplex-2AP	CCTTTCCCCTTCTCCTTA _p TTCCTCTTCCCCTTTCC
Thymine-Duplex-c0	GGAAAGGGGAAGAGGAATAAGGAGAAGGGGAAAGG
Thymine-Duplex-c1	GGAAAGGGGAAGAGGAAAAGGAGAAGGGGAAAGG
Thymine-Duplex-c2	GGAAAGGGGAAGAGGAAAGGAGAAGGGGAAAGG
Thymine-Duplex-c3	GGAAAGGGGAAGAGGAAGGAGAAGGGGAAAGG
Thymine-Duplex-c4	GGAAAGGGGAAGAGGAGAAGGGGAAAGG
Thymine-Duplex-c5	GGAAAGGGGAAGAGGGGAAAGGGGAAAGG
Guanine-Duplex-2AP	CCTTTCCCCTTCTTTGGApGGTTTCTTCCCCTTTCC
Guanine-Duplex-c0	GGAAAGGGGAAGAAACCTCCAAAGAAGGGGAAAGG
Guanine-Duplex-c1	GGAAAGGGGAAGAAACCCCAAAGAAGGGGAAAGG
Guanine-Duplex-c2	GGAAAGGGGAAGAAACCCAAAGAAGGGGAAAGG
Guanine-Duplex-c3	GGAAAGGGGAAGAAACCAAAGAAGGGGAAAGG
Guanine-Duplex-c4	GGAAAGGGGAAGAAACAAAGAAGGGGAAAGG
Guanine-Duplex-c5	GGAAAGGGGAAGAAAAAAGAAGGGGAAAGG

Figure S9. DNA sequences of 2-AP loop size study in G-quadruplex.

Name	Sequence (5'-3')
PW17	GGGTAGGGCGGGTTGGG
FG5A	GGGTA _p GGGCGGGTTGGG
FG9A	GGGTAGGGA _p GGGTTGGG
T30177	GTGGTGGGTGGGTGGGT
T30177-TT	TTGTGGTGGGTGGGTGGGT
FG6A	GGGTTA₂GGGTGGGTGGG
FG10A	GGGTGGGTTA₀GGGTGGG
FG14A	GGGTGGGTGGGTTApGGG
1-Base loop G4	GGGApGGGGGGGTTGGG
2-Base loop G4	GGGTApGGGCGGGTTGGG
3-Base loop G4	GGGTTApGGGTGGGTGGG
Human Telomere-1	TAGGGTTA _p GGGTTAGGGTTAGGG
Human Telomere-2	
Human Telomere-3	

Table S3. DNA sequences of 2-AP loop in G-quadruplex study.

The colored base indicates the 2-aminopurine substitution.

III. References

- 1. T. Li, E. Wang and S. Dong, J. Am. Chem. Soc., 2009, **131**, 15082-15083.
- 2. Y. Xue, Z. Y. Kan, Q. Wang, Y. Yao, J. Liu, Y. H. Hao and Z. Tan, *J. Am. Chem. Soc.*, 2007, **129**, 11185-11191.
- 3. D. C. Ward, E. Reich and L. Stryer, *J Biol Chem*, 1969, **244**, 1228-1237.
- 4. B. Holz, *Nucleic Acids Res.*, 1998, **26**, 1076-1083.
- 5. E. L. Rachofsky, R. Osman and J. B. A. Ross, *Biochemistry*, 2001, **40**, 946-956.
- L. Serrano-Andres, M. Merchan and A. C. Borin, *Proc. Natl. Acad. Sci. U. S. A.*, 2006, 103, 8691-8696.
- M. C. Miller, R. Buscaglia, J. B. Chaires, A. N. Lane and J. O. Trent, *J. Am. Chem. Soc.*, 2010, 132, 17105-17107.
- V. Dapic, V. Abdomerovic, R. Marrington, J. Peberdy, A. Rodger, J. O. Trent and P. J. Bates, Nucleic Acids Res., 2003, 31, 2097-2107.
- V. Dapic, P. J. Bates, J. O. Trent, A. Rodger, S. D. Thomas and D. M. Miller, *Biochemistry*, 2002, 41, 3676-3685.
- 10. N. Jing, R. F. Rando, Y. Pommier and M. E. Hogan, *Biochemistry*, 1997, **36**, 12498-12505.
- 11. T. Li, E. Wang and S. Dong, *Anal. Chem.*, 2010, **82**, 7576-7580.
- 12. L. Liu, Y. Shao, J. Peng, C. Huang, H. Liu and L. Zhang, *Anal. Chem.*, 2014, **86**, 1622-1631.
- 13. C. Shi, H. Gu and C. Ma, *Anal. Biochem.*, 2010, **400**, 99-102.
- 14. S. Nagatoishi, T. Nojima, E. Galezowska, A. Gluszynska, B. Juskowiak and S. Takenaka, *Anal. Chim. Acta*, 2007, **581**, 125-131.