# Ultrasensitive Detection of Nucleic Acids Based on Dually Enhanced Fluorescence Polarization

Bin Wang,<sup>a</sup> Dahai Ren,<sup>\*a</sup> Zheng You,<sup>a</sup> Yaxiaer Yalikun<sup>b</sup> and Yo Tanaka<sup>b</sup>

<sup>a</sup> State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing, 100084, China

<sup>b</sup> Laboratory for Integrated Biodevice, Quantitative Biology Center, RIKEN, Suita, Osaka 565-0871, Japan

# **Corresponding Author**

E-mail: rendh@tsinghua.edu.cn (D.Ren)

*Tel:* +86 010 62776000.

# **Table of contents**

| Theoretical analysis of NSET-enhanced fluorescence polarization |    |
|-----------------------------------------------------------------|----|
| Characterization of AuNPs                                       | р3 |
| Molar ratio of Alexa488 and AuNPs                               | p4 |
| DNA detection in DMEM solution                                  | р6 |
| Analytical performance comparison                               | p7 |
| Reference                                                       | p7 |

#### Theoretical analysis of NSET-enhanced fluorescence polarization

The relationship between the concentration and fluorescence polarization of fluorophoresis given by<sup>[1, 2]</sup>

$$\frac{1}{P} = \frac{1}{P_0} + Ac\tau \tag{S.1}$$

where *P* is fluorescence polarization of fluorophores at the concentration of *c*,  $P_0$  is fluorescence polarization of infinite dilution of fluorophores. *A* can be seen as a constant at low concentration and  $\tau$  is the excitation state lifetime of fluorophores. So fluorescence polarization of fluorophores can be given by

$$P = \frac{P_0}{1 + Ac\tau} \tag{S.2}$$

When energy transfer occurs, the lifetime is shortened and can be given by

$$E = 1 - \frac{\tau_{DA}}{\tau_D} \tag{S.3}$$

where *E* is the energy transfer efficiency,  $\tau_{DA}$  and  $\tau_D$  are the lifetime of fluorophores with and without quenchers, respectively. So the fluorescence polarization of fluorophores conjugated with quenchers is given by

$$P = \frac{P_0}{1 + A_{DA}c(1 - E)\tau_D}$$
(S.4)

Thus it can be considered that the effective concentration becomes (1-E)c, which improves the fluorescence polarization value.

Besides, the increase of the molecular volume of fluorophores due to quencher conjugation can also raise the polarization value. The constant *A* is inversely proportional to the rotational relaxation time ( $\mathbf{r}$ ) according to formula (S.1) and the dependence of polarization on the rotational relaxation time<sup>[3]</sup>

$$\frac{1}{P} - \frac{1}{3} = \left(\frac{1}{P_0} - \frac{1}{3}\right) \left(1 + \frac{3\tau}{\Gamma}\right)$$
(S.5)

When fluorophores are conjugated with quenchers, the rotational relaxation time is prolonged and the constant *A* decreases, which enhances the fluorescence polarization in another respect.

# **Characterization of AuNPs**

We obtained the SEM image and analyzed the size of AuNPs using ImagJ software. LSP absorbance spectrum of AuNPs was compared with the emission spectrum of Alexa488 dye.



**Fig.S1.**TEM image of AuNPs. (A) TEM image of AuNPs obtained by Hitachi H-7650 at the ×50k magnification and the 80kV accelerating voltage. (B) Size distribution of AuNPs. The average diameter was calculated to be 6.55nm.



**Fig. S2.** LSP absorbance spectrum of AuNPs (black curve with the left-Y axe) and the emission spectrum of the Alexa488 dye (red curve with the right-Y axe). There exists perfect overlap of LSP absorbance band of AuNPs with the emission band of Alexa488.

### Molar ratio of Alexa488 and AuNPs

10nM Alexa488 dye was mixed with dsDNA-AuNPs of different final concentrations and fluorescence intensity and polarization of Alexa488 were detected after 30 minutes in order to determine the quantitative relation of Alexa488 and AuNPs during synthesis.



**Fig. S3.** Optical quenching of Alexa488 with dsDNA-AuNPs conjugates of different concentrations. (A) Fluorescence intensity. (B) Fluorescence polarization.



Fig. S4. Quenching efficiency changed with varied molar ratio of Alexa488 and AuNPs.

## **DNA detection in DMEM solution**

To validate the feasibility of this method in real biological samples, the competitive displacement assay for DNA detection was conducted in DMEM solution with 150mM of sodium ions.



**Fig. S5.** Fluorescence polarization based DNA detection in DMEM solution. Error bars were obtained from three independent experiments.

| Technique                   | Target molecule | Detection limit | Ref       |
|-----------------------------|-----------------|-----------------|-----------|
| FRET                        | DNA             | 12nM            | [4]       |
| Oligonucleotide replacement | DNA             | nM level        | [5]       |
| Electrochemiluminescence    | miRNA           | 1.1nM           | [6]       |
| Surface plasmon resonance   | miRNA           | 1nM             | [7]       |
| Quartz crystal microbalance | miRNA           | 400pM           | [8]       |
| Fluorescence polarization   | DNA             | 500pM           | [9]       |
| Fluorometric                | DNA             | 20pM            | [10]      |
| Fluorescence polarization   | DNA             | 372pM           | this work |

Table S1. Analytical performance between the reported methods and the proposed method.

#### Reference

[1]Weber G. Dependence of the polarization of the fluorescence on the concentration. Transactions of the Faraday Society. 1954,50:552-555.

[2] Fredrickson G H. CONCENTRATION DEPOLARIZATION OF FLUORESCENCE IN THE PRESENCE OF MOLECULAR ROTATION. Journal of Chemical Physics. 1988,88:5291-5299.

[3] Jameson D M, and Ross J A. Fluorescence Polarization/Anisotropy in Diagnostics and Imaging. Chemical Reviews. 2010,110:2685-2708.

[4] Dong H, Gao W, Yan F, et al. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Analytical chemistry, 2010, 82(13): 5511-5517.

[5] Vannoy C H, Chong L, Le C, et al. A competitive displacement assay with quantum dots as fluorescence resonance energy transfer donors. Analytica chimica acta, 2013, 759: 92-99.

[6] Shamsi M H, Choi K, Ng A H C, et al. Electrochemiluminescence on digital microfluidics for microRNA analysis. Biosensors and Bioelectronics, 2016, 77: 845-852.

[7] Loo J F C, Wang S S, Peng F, et al. A non-PCR SPR platform using RNase H to detect MicroRNA 29a-3p from throat swabs of human subjects with influenza A virus H1N1 infection. Analyst, 2015, 140(13): 4566-4575.

[8] Palaniappan A, Cheema J A, Rajwar D, et al. Polythiophene derivative on quartz resonators for miRNA capture and assay. Analyst, 2015, 140(23): 7912-7917.

[9] Park K S, Charles R C, Ryan E T, et al. Fluorescence Polarization Based Nucleic Acid Testing for Rapid and Cost - Effective Diagnosis of Infectious Disease. Chemistry-A European Journal, 2015, 21(46): 16359-16363.

[10] Ge J, Bai D M, Hu Y L, et al. Fluorometric determination of nucleic acids based on the use of polydopamine nanotubes and target-induced strand displacement amplification. Microchimica Acta, 2018, 185(2): 105.