Electronic Supplementary Information (ESI) This journal is (c) The Royal Society of Chemistry 2017

Au nanoclusters-embedded chitosan nanocapsules as labels for ultrasensitive fluorescent immunoassay of *Escherichia coli* O157:H7

Chang Cheng, Lu Yang, Miao Zhong, Wenfang Deng,* Yueming Tan,* Qingji Xie and

Shouzhuo Yao

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China

Email: dandy3-3@163.com (W. Deng); tanyueming0813@126.com (Y. Tan)

Fig. S1 (a) Fluorescence spectra of AuNCs in aqueous solutions of different pH. (b) Effect of

pri on the hubiescence intensity of Aurics at 572	pН	on	the	fluorescence	intensity	of	AuNCs	at	572	nm
---	----	----	-----	--------------	-----------	----	-------	----	-----	----

Fig. S2 FT-IR spectra of reduced glutathione (red line) and AuNCs (black line).

Fig. S3 Fluorescence spectra of CS (10 mg mL⁻¹) solution.

Fig. S4 Standard curve of fluorescent intensity as functions of the concentration of AuNCs@CS nanocapsules in 0.10 M PBS.

Electronic Supplementary Information (ESI) This journal is (c) The Royal Society of Chemistry 2017

Fig. S5 Apparent Zeta potentials of AuNCs and CS at pH 3.2 (a) and 3.8 (b).

Fig. S6 TEM (a) and HRTEM (b) images of CS nanocapsules.

Fig. S7 SEM image (a) and FT-IR spectrum (b) of amino-functionalized Fe₃O₄ nanoparticles.

Electronic Supplementary Information (ESI) This journal is (c) The Royal Society of Chemistry 2017

Fig. S8 (a) Effect of the weight ratio of immunofluorescent nanocapsules and immunomagnetic nanoparticles on the fluorescent intensity at 572 nm for the detection of 700 CFU mL⁻¹ *E. coli O157:H7.* (b) Effect of incubation time on the fluorescent intensity at 572 nm for the detection of 700 CFU mL⁻¹ *E. coli* O157:H7.

Fig. S9 Fluorescence spectra for the determination of 0, 3, and 10 CFU mL⁻¹ *E. coli* O157:H7 using immunofluorescent nanocapsules as fluorescent labels.

Fig. S10 The fluorescent emission of *Escherichia coli* O157:H7 at the excitation wavelength of 422 nm.

<i>E</i> . <i>coli</i> O157:H7 concentration (CFU mL ⁻¹)	Capture efficiency
3	100%
10	100%
100	>98%
500	>98%
1000	>96%
5000	>95%
10000	>95%
20000	>90%

Table S1. The measured capture efficiency.^a

^a After immunomagnetic capture and separation, by quantitatively detecting the rest of E. coli

O157:H7 cells in PBS using the traditional plate-counting method, the capture efficiency was obtained.

Method	Linear range (CFU mL ⁻¹)	LOD (CFU mL ⁻¹)	Ref.
Fluorescence	$1.0 imes 10^3$ - $5.0 imes 10^7$	330	1
Fluorescence	$1.0 imes 10^3$ - $1.0 imes 10^8$	100	2
Fluorescence	$3.81\times10^2\text{-}2.44\times10^4$	460	3
Impedimetric immunosensor	$30 - 3.0 \times 10^4$	300	4
Fluorescence	10 ² - 10 ⁵	10 ²	5
UV-Vis spectroscopy	$4 imes 10^2$ - $4 imes 10^7$	$5 imes 10^3$	6
Impedimetric immunosensor	$1.5 imes 10^2$ - $1.5 imes 10^7$	1.5×10^2	7
Cyclic voltammetry	$30 - 3 \times 10^{7}$	~30	8
Electrochemical-chemical- chemical redox cyclic voltammetry	10 ³ - 10 ⁸	10 ³	9
Surface plasmon resonance imaging	-	10 ²	10
Surface plasmon resonance	$3 imes 10^3$ - $3 imes 10^8$	$3 imes 10^3$	11
Colorimetry	$10^4 - 10^7$	10	12
Chemiluminescence immunoassay	$4.3\times10^3\text{ - }4.3\times10^5$	1.2×10^3	13
Fluorescence	3 - 10 ³	1	Our work

Table S2. The comparison of the determination of *E. coli* on the literature

Sample	Added	Detected		\mathbf{D}	
	(CFU mL ⁻¹)	(CFU mL ⁻¹)	KSD (%)	Recovery (%)	
	3×10 ²	2.90×10 ²	1.37	96.7	
Milk	5×10 ²	4.85×10 ²	1.24	97.0	
	7×10^{2}	7.10×10^{2}	0.97	100.1	
	3×10 ²	3.10×10 ²	0.81	103.3	
Water	5×10 ²	4.80×10 ²	0.87	96.0	
	7×10 ²	7.20×10^{2}	0.45	102.8	

Table S3. Results of determination of *E. coli* O157:H7 in real samples.

References

- N. Wang, X. Wei, A. Q. Zheng, T. Yang, M. L. Chen and J. H. Wang, ACS Sens., 2017, 2, 371-378.
- 2. Y. F. Duan, Y. Ning, Y. Song and L. Deng, *Microchim. Acta*, 2014, **181**, 647-653.
- S. Chandra, T. K. Mahto, A. R. Chowdhuri, B. Das and S. K. Sahu, Sensor. Actuat. B-Chem., 2017, 245, 835-844.
- Q. Chen, J. H. Lin, C. Q. Gan, Y. H. Wang, D. Wang, Y. H. Xiong, W. H. Lai, Y. T. Li and M. H. Wang, *Biosens. Bioelectron.*, 2015, 74, 504-511.
- L. Zhao, Y. F. Chen, J. Yuan, M. H. Chen, H. Zhang and X. H. Li, ACS Appl. Mater. Inter., 2015, 7, 5177-5186.
- W. J. Kim, S. Kim, A. R. Kim and D. J. Yoo, *Ind. Eng. Chem. Res.*, 2013, 52, 7282-7288.
- Y. X. Wang, J. F. Ping, Z. Z. Ye, J. Wu and Y. B. Ying, *Biosens. Bioelectron.*, 2013, 49, 492-498.
- 8. A. Guner, E. Cevik, M. Senel and L. Alpsoy, *Food Chem.*, 2017, 229, 358-365.
- M. R. Akanda, V. Tamilavan, S. Park, K. Jo, M. H. Hyun and H. Yang, *Anal. Chem.*, 2013, 85, 1631-1636.
- E. Bulard, A. Bouchet-Spinelli, P. Chaud, A. Roget, R. Calemczuk, S. Fort and T. Livache, *Anal. Chem.*, 2015, 87, 1804-1811.
- 11. Y. X. Wang, Z. Z. Ye, C. Y. Si and Y. B. Ying, *Food Chem.*, 2013, **136**, 1303-1308.

- J. H. Chen, S. D. Alcaine, Z. W. Jiang, V. M. Rotello and S. R. Nugen, *Anal. Chem.*, 2015, 87, 8977-8984.
- Y. Zhang, C. Tan, R. Fei, X. Liu, Y. Zhou, J. H. Chen, H. Chen, R. Zhou and Y. Hu, *Anal. Chem.*, 2014, 86, 1115-1122.