Supporting Information for

Efficient synthesis of riboflavin-imprinted magnetic nanoparticles by boronate affinity-based surface imprinting for the selective recognition of riboflavin

Daojin Li^{a*}, Zijun Bie^b, Fangfang Wang^a, Enhui Guo^a

^aCollege of Chemistry and Chemical Engineering, and Henan Key Laboratory of Fuction-Oriented Porous Materials, Luoyang Normal University, Luoyang 471022, P. R. China. Address here. E-mail: lidaojin7910@126.com.

^bDepartment of Chemistry Bengbu Medical College, 233030,

Supporting Figures

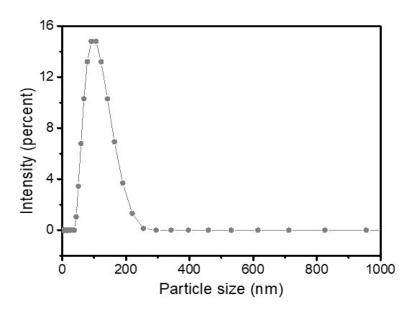


Fig. S1 The particle size characterization of Fe₃O₄@MIPs by dynamic light scattering.

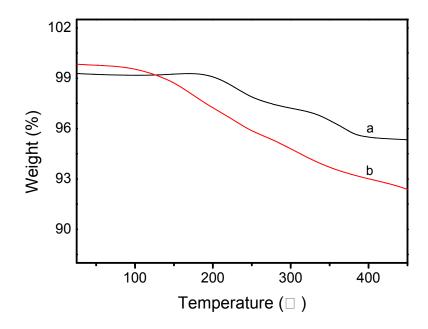


Fig. S2 TGA curves of magnetic particles: (a) Fe_3O_4 @AA and (b) Fe_3O_4 @MIPs.

Fig. S3 A) Fluorescence spectra for milk (a), milk spiked with 0.02 mg/mL(b), 0.04 mg/mL (c) and 0.06 mg/mL (d) riboflavin. B) Fluorescence spectra for extracted from 0.02 mg/mL riboflavin spiked milk (a), 0.04 mg/mL riboflavin spiked milk (b) and 0.06 mg/mL riboflavin spiked milk (c) by the riboflavin-imprinted MNPs.