Aggregation Enhanced Excimer Emission (AEEE) of Benzo[ghi]perylene and Coronene: Multimode Probes for Facile Monitoring and Direct Visualization of Micelle Transition

Ejaz Hussain^{ab}, Niu Niu^{ac}, Huipeng Zhou^a, Sohail Anjum Shahzad^{ad}, Cong Yu^{abc*}

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied

Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China

^b University of Chinese Academy of Sciences, Beijing, 100049, P. R. China

^c University of Science and Technology of China, Hefei, Anhui, China

^d Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan

*Corresponding author

Fax: +86-431-85262710

E-mail: congyu@ciac.ac.cn

Fluorescence Lifetime Measurement

Lifetime of BzP in the samples of various concentration of SDS was measured. The fluorescence decay of probe in the surfactant solutions was measured at a wavelength of 430 nm upon its excitation at 370 nm. The fluorescence decay curves can be fitted exactly at triple exponential decay functions: [s1]

$$I(t) = I_o + A_1 \exp\left(\frac{-t}{\tau_1}\right) + A_2 \exp\left(\frac{-t}{\tau_2}\right) + A_3 \exp\left(\frac{-t}{\tau_3}\right)$$

I and I_o are fluorescence intensities at time t_1 and t_0 . A_1 , A_2 and A_3 are exponential constants. τ_1 , τ_2 and τ_3 are fluorescence decay times, and t is the time. The average lifetime of emission decay was calculated by the equation: [s1]

$$\tau_{ave} = A_1 \tau_1^2 + A_2 \tau_2^2 + A_3 \tau_3^2 / A_1 \tau_1 + A_2 \tau_2 + A_3 \tau_3$$

Thus the average lifetime increasing from 69 to 122 ns was obtained moving from lower to higher concentration of SDS.

Fig. S1: The chemical structures of benzo[*ghi*]perylene and coronene.

Fig. S2: Fluorescence emission spectral changes of BzP with increasing percentage of water in the ethanol-water mixture.

Fig. S3: Fluorescence spectra of coronene with increasing water percentage in ethanol-water mixture (Left), and at various concentration of SDS aqueous solution (Right). Cron: 6 μ M; λ_{ext} : 365 nm; slit: 2 nm.

Fig. S4: Changes in the fluorescence emission spectra and the excimer emission of 6 μ M BzP at 520 nm with the concentration of CTAB (a, b), SDS (c, d), and Triton X-100 (e, f). λ_{ex} : 365 nm; slit: 2 nm.

Fig. S5: Changes in monomer emission of BzP at 430 nm with the concentration of SDS (a), CTAB (b), and Triton X-100 (c).

Fig. S6: The plots of excimer and monomer emission intensity ratio (I_E/I_M) of Cron as a function of the concentration of SDS, CTAB, and Triton X-100.

Fig. S7: Changes in the fluorescence emission spectra and the excimer emission of 6 μ M BzP at 520 nm as a function of the concentration of SLS (a, b), and DDAB (c, d). λ_{ex} : 365 nm; slit: 2 nm.

Fig. S8: a) Normalized fluorescence spectra of pyrene showing changes with increasing percentage of water in ethanol solution (Pyrene, 80 μ M; λ_{ext} , 310 nm; slit, 2 nm). b) Pyrene solutions in varying ethanol-water compositions under UV lamp.

Fig. S9: a) UV-vis absorption spectra of Cron at various concentration of SDS. b) Absorption changes of Cron at 305 nm as a function of the concentration of SDS (1b), CTAB (2b), and Triton X-100 (3b). Cron: $6 \mu M$.

Fig. S10: Changes in lifetime of benzo[ghi]perylene fluorescence emission with SDS concentration. BzP: $6\mu M \lambda_{ex}$: 375 nm; λ_{em} : 430 nm.

Probe	Method	SLS (mM)	DDAB (mM)
	Excimer	12.1-12.6	0.06-0.08
	Monomer	12.3-12.6	0.06-0.07
Benzo[ghi]perylene	$I_{\rm E}/I_{\rm M}$	12.1±0.06	0.07 ± 0.008
	Visual Inspection	12.1-12.8	0.07-0.08
	UV-vis	12.4 ± 0.3	0.08±0.01
	Excimer	12.1-12.6	0.05-0.07
	Monomer	12.1-12.4	0.06-0.08
Coronene	$I_{\rm E}/I_{\rm M}$	12.1±0.06	0.07±0.01
	UV-vis	12.4±0.2	0.08±0.01
Literature	Ref ⁷⁻¹⁰	12.1	0.05-0.08

Table S1: The values of critical micelle concentration (CMC) determined by multiple approaches.

Standard deviations (SD) were estimated from three measurements

Probe	Method	Parameter	CMC (mM)
Pyrene	Fluorescence	Vibronic band ratio	0.80 ^{8a}
5-, 16-doxyl stearic acid	ESR	Microviscosity	0.83 ⁵
Coumarine 153	Fluorescence	Spectral shift of I _{max}	0.86 ^{8d}
-	Conductivity	Conductance	0.98 ^{7b}
-	Surface tension	Surface tension	0.96 ^{7c}
Nile Red	Fluorescence	Intensity	1.2 ^{8d}

Table S2: Comparison between the methods of CMC determination with representative CMC values of CTAB.

Fig. S11: NMR spectra of coronene recorded at 500 MHz in CDCl₃.

Fig. S12: NMR spectra of benzo[ghi]perylene recorded at 500 MHz in CDCl₃.

Reference

M. I. Halawa, W. Gao, M. Saqib, S. A. Kitte, F. Wu, G. Xu, *Biosens. Bioelectron.*, 2017, 95, 8-14.