Supporting Information

Development of a selective and highly sensitive fluorescence assay for nucleoside

triphosphate diphosphohydrolase1 (NTPDase1, CD39)

Sang-Yong Lee,^{a,*} Xihuan Luo,^a Vigneshwaran Namasivayam,^a Jennifer Geiss,^a Salahuddin Mirza,^a Julie Pelletier,^b Holger Stephan,^c Jean Sévigny,^{b,d} and Christa E. Müller ^a

^a PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany

^b Centre de Recherche du CHU de Québec – Université Laval, Québec City, QC, Canada

^c Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden - Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany

^d Départment de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, QC, Canada

* Correspondence: Dr. Sang-Yong Lee, PharmaCenter Bonn, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany.

E-mail: s6saleee@uni-bonn.de, Fax: +49-228-73-2567

Table of contents

Fig. S1. CE chromatograms with different incubation times for the hydrolysis of PSB-170621A	A to its
enzyme product PSB-170621B	p.2
Fig. S2. LC-MS chromatogram of PSB-170621B	p.2
Fig. S3. Calibration curves for the forward and reverse operation	p.3
Fig. S4. Structural formulae of the investigated enzyme inhibitors	p.3
Table S1. Kinetic data of PSB-170621A at different ectonucleotidases	p.4

Fig. S1. CE chromatograms with different incubation times for the hydrolysis of PSB-170621A to its enzyme product PSB-170621B. The separation conditions for the reverse operation were: 50 mM phosphate buffer (pH 6.5), effective capillary length of 10 cm x 50 μ m (id), electrokinetic injection (6 kV, 30 s), separation at 15 kV and detection at 488 nm (excitation) and 520 nm (emission). The samples were diluted 100-fold with reaction buffer before CE measurements.

Fig. S2. LC-MS chromatogram of PSB-170621B. (**A**) Only one peak with a retention time of 5.8 min was observed in the UV/VIS chromatogram, (**B**) Two M/z values were obtained for the single peak in the UV/VIS chromatogram (M/z 805,2219 with z = 1 and M/z 403,1153 with z = 2).

Fig. S3. Calibration curves for the forward operation (A) and the reverse operation (B).

Fig. S4. Structural formulae of the investigated inhibitors.

Table S1. Kinetic data of PSB-170621A at different ectonucleotidases

	NTPDases				NPPs		APs
	NTPDase1	NTPDase2	NTPDase3	NTPDase8	NPP1	NPP3	TNAP
$K_m (\mu M)$	19.6	55.5	13.3	105	37.5	47.6	12.5
$k_{cat} (10^{-3} \text{ s}^{-1})$	119	4.94	22.5	38.7	1.99	1.05	24.8
$k_{cat}/K_m (\mathrm{M}^{-1} \ge \mathrm{s}^{-1})$	6070	89.0	1690	369	53.1	22.1	1980