Supplementary Information

A dual chemosensor for Cu^{2+} and Hg^{2+} based on rhodamine-

terminated water-soluble polymer in 100% aqueous solution

Guang Li*, Liping Bai, Farong Tao, Aixia Deng and Liping Wang*

School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China

E-mail addresses: lglzsd@126.com (G. Li), wangliping5@163.com (L. Wang).

Fig. S1. ¹H NMR spectrum of PEGSRh in CDCl₃.

Fig. S2. Effects of reaction time on the absorbance intensity of PEGSRh (10 μ M) with 2 equiv of Cu²⁺ in aqueous solution.

Fig. S3. Effects of reaction time on the absorbance intensity of PEGSRh (10 μ M) with 2 equiv of Hg²⁺ in aqueous solution.

Fig. S4. Job plot of PEGSRh and Cu^{2+} in aqueous solution. The total concentration of PEGSRh and Cu^{2+} is 10 μ M.

Fig. S5. Benesi-Hildebrand plot (absorbance at 567 nm) of PEGSRh (10 μ M) with Cu²⁺.

Fig. S6. Determination of the detection limit based on the absorbance change at 567 nm in the ratio of PEGSRh (10 μ M) with Cu²⁺.

Fig. S7. Job plot of PEGSRh and Hg^{2+} in aqueous solution. The total concentration of PEGSRh and Hg^{2+} is 10 μ M.

Fig. S8. Benesi-Hildebrand plot (fluorescence intensity at 586 nm) of PEGSRh (10 μ M) with Hg²⁺.

Fig. S9. Determination of the detection limit based on the fluorescence intensity change at 586 nm in the ratio of PEGSRh (10 μ M) with Hg²⁺.

Chemosensor structure	Working solvent	Sensing ions	Detection limit	Ref.
	EtOH/H ₂ O (9:1, v/v)	Cu ²⁺	2.0× 10 ⁻⁶ M	18
	H ₂ O/CH ₃ CN (3:2, v/v)	Cu ²⁺	1.1 × 10 ⁻⁷ M	20
	CH ₃ CN/H ₂ O (9:1, v/v)	Cu ²⁺	6.88× 10 ⁻⁶ M	21
HN C C C C C C C C C C C C C C C C C C C		Hg ²⁺	$2.96\times10^{-6}M$	
N C C N C	CH ₃ CN/H ₂ O (5:5, v/v)	Hg ²⁺	$1.6 \times 10^{-8} \text{ M}$	17
	CH ₃ CN	Zn^{2+}	$2.21 \times 10^{-6} M$	22
	CH ₃ CN/H ₂ O (8:2, v/v)	Hg ²⁺	2.16× 10 ⁻⁶ M	
D so ~	THF/H ₂ O (4:6, v/v)	Hg^{2^+}	$2.7 \times 10^{-7} \mathrm{M}$	42
		Ag^+	4.5× 10 ⁻⁷ M	
s o	H ₂ O	Cu ²⁺	5.92× 10 ⁻⁷ M	This
		Hg ²⁺	2.85 × 10 ⁻⁶ M	work

Table S1 Comparison of some reported rhodamine-based Cu²⁺ or Hg²⁺ chemosensors