Electronic Supplementary Information

Colorimetric chemosensor for heptanal with selectivity over formaldehyde and acetaldehyde through synergistic interaction of hydrophobic interactions and oxime formation

Jinyoung Oh, Seungyoon Kang, Cheol Gyu Lee, and Min Su Han*

Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea

E-mail: happyhan@gist.ac.kr (M. S. Han); Fax: +82-62-715-2866; Tel: +82-62-715-2848

Determination of the optimal ratio of DA-A and DA-B

Fig. S1 a) UV-Vis spectra of PDA liposomes (100 μ M) composed with various ratio of **DA-A** and **DA-B** (1:0, 7:1, 3:1, 1:1, 1:3, 1:7, and 0:1) in the acetate buffer (20 mM, pH 4.0); b) UV-Vis spectra obtained 2 h after the addition of heptanal solutions (0, 10, 20, 30, 40, 50, 60, and 70 μ M in 0.1 % MeOH) to the acetate buffer (20 mM, pH 4.0) containing PDA liposomes (100 μ M) composed with 1:0 ratio of **DA-A** and **DA-B**; c) Plot of the absorbance ratio at 543 and 637 nm in PDA liposomes (100 μ M) composed with 3:1 and 7:1 ratio of **DA-A** and **DA-B** *versus* heptanal concentrations.

Investigation of temperature parameter in PDA liposome

Fig. S2 a) UV-Vis spectra of PDA liposomes (100 μ M) in acetate buffer (20 mM, pH 4.0) obtained after incubation for 20 min at various temperatures; b) Plot of absorbance at 637 nm for various temperatures.

Estimation of limit of detection for heptanal using PDA liposome

Fig. S3 Plot of absorbance ratio at 543 and 637 nm against heptanal concentrations (5, 10, 15, 20, and 30 μ M in 0.1 % MeOH) where A and A₀ means absorbance ratio at 543 and 637 nm in the presence and absence of heptanal, respectively.

Intercept = -0.0255

Slope = 0.0053

 $R^2 = 0.9436$

Limit of detection (LOD) = $4.8 \,\mu M$

Dynamic light scattering (DLS) of PDA liposome

Fig. S4 The size distribution of PDA liposomes (100 μ M) obtained after 2h incubation in the a) absence and b) presence of heptanal (50 μ M in 0.1 % MeOH).

Raman spectra of PDA liposome

Fig. S5 Raman spectra of PDA liposomes (500 μ M) 2h after incubation in the absence and presence of heptanal (250 μ M).

Selectivity test for mimic serum

Fig. S6 Plot of the absorbance ratio at 543 and 637 nm obtained 2 h after the addition of mimic serum (combination of glucose, urea, proline, and NaCl, 500 μ M), mimic serum with aldehydes (formaldehyde and acetaldehyde, 500 μ M), and heptanal (50 μ M) to the acetate buffer containing the PDA liposomes (100 μ M).

Characterization of compounds

Fig. S7 ¹H-NMR spectrum of compound 7 in CDCl_{3.}

Fig. S8 ¹H-NMR spectrum of compound 6 in CDCl_{3.}

Fig. S9 ¹H-NMR spectrum of compound 5 in CDCl_{3.}

Fig. S10 1 H-NMR spectrum of compound 4 in CD₃OD.

Fig. S11 ¹H-NMR spectrum of compound 3 in CDCl₃

Fig. S12 FT-IR spectrum of compound 2

Fig. S13 ¹H-NMR spectrum of compound 2 in CDCl₃

Fig. S14 ¹³C-NMR spectrum of compound 2 in CDCl₃

Fig. S15 ESI-MS spectrum of compound 2

Fig. S16 FT-IR spectrum of compound DA-A

Fig. S17 ¹H-NMR spectrum of compound DA-A in DMSO-d₆

Fig. S18 13 C-NMR spectrum of compound DA-A in DMSO-d₆ : CDCl₃ = 1 : 1

g. S19 ESI-MS spectrum of compound DA-A

Fig. S20 $^1\text{H-NMR}$ spectrum of compound 9 in CDCl3

g. S21 ¹H-NMR spectrum of compound DA-B in $CDCl_3$