Ultrasensitive electrochemical cytosensor for highly specific detection of HL-60 cancer cells based on metal ion functionalized titanium phosphate nanospheres

Panpan Sun^a, Wei-Wei Xiong^c, Dong Zhu^a, Zhuhua Dong^a, Xuping Jin^a, Beibei Liu^a, Yi Zhang^a, Beihua Bao^a, Weifeng Yao^a, Li Zhang^{a,b,*} and Fang-Fang Cheng^{a*}

- ^a School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
- ^b School of Hanlin, Nanjing University of Chinese Medicine, Taizhou 225300, PR China
- ^c Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
- * Authors to whom correspondence should be addressed;

Email: ffcheng@njucm.edu.cn (F.-F. Cheng); zhangli@njucm.edu.cn (L. Zhang)

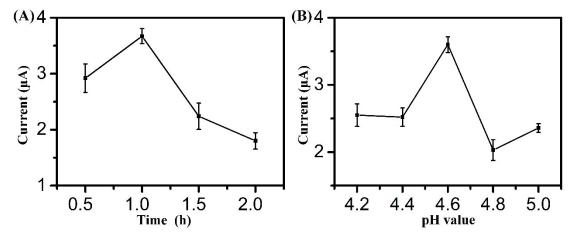


Figure S1. Effects of cell incubation time (A) and pH value (B)

Table S1 Detection limits of various cytosensors

	Signal Probes	Cell Types	LOD	Linear range	Ref
1	Fe ₃ O ₄ /MnO ₂ /Au@Pd nanoelectrocatalysts and enzyme for signal	HepG2	15 cells mL ⁻¹	$1\times10^2\sim1\times10^7~cells~mL^{-1}$	3
	amplification				
2	Sgc8c-functionalized cathode and a nitrogen-doped graphene/gold	CCRF-CEM	4 cells	5~50000 cells	40
	nanoparticles/glucose oxidase anode				
3	An indium tin oxide electrode array and multifunctional nanoprobe	HepG2	10 cells mL ⁻¹	10^2 to 10^7 cells mL $^{-1}$	28
4	PNT-CS-modified electrodes using the electrochemical impedance	K562	$630 \text{ cells mL}^{-1}$	$5\times10^3\sim5\times10^7$ cells mL ⁻¹	22
	method				
5	Fe ₃ O ₄ @Ag-Pd Nanoelectrocatalysts for signal amplification	MCF-7	34 cells mL ⁻¹	$50{\sim}1\times10^7~cells~mL^{-1}$	29
		T47D	42 cells mL ⁻¹		
6	Peroxidase-mimetic Au nanoflower decorated graphene-hemin	K562	10 cells mL ⁻¹	$10\sim5.0\times~10^4~cells~mL^{-1}$	24
	composite				
7	Cd ²⁺ ion functionalized titanium phosphate nanospheres for signal	HL-60	35 cells mL ⁻¹	$10^2 \sim 1 \times 10^7 \text{ cells mL}^{-1}$	present work
	amplification				

Table S2 The reliability of the proposed method applied in detection of HL-60 in human serum

Concentration of	Measured	Relative error %	
Added HL-60 cells	concentration of HL-		
(cells/mL)	60 cells (cells/mL)		
Blank	7		
500	549±12	9.8	
1000	1073±184	14.6	
5000	4530±737	9.4	
10000	10410±1694	4.1	

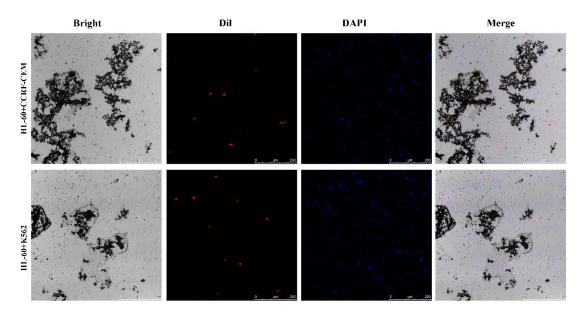


Figure S2 Fluorescence microscopy images of (A) CCRF-CEM cells stained by Dil and HL-60 cells stained by DAPI, and (B) K562 cells stained by Dil and HL-60 cells stained by DAPI captrued on KH1C12/c-MWNT observed under confocal fluorescence microscope.

Carboxyl-MWNT was modified on the bottom of petri dish, and the KH1C12 was attached to the c-MWNT. BSA was used to remove unattached KH1C12. 1 mL culture solution containing 4×10^4 HL-60 cells stained with DAPI (λ_{ex} =364 nm, λ_{em} =454 nm) and 4×10^4 CCRF-CEM cells (or K562 cells) stained with Dil (λ_{ex} =549 nm, λ_{em} =565 nm) were observed under confocal fluorescence microscope/Inverted Fluorescence microscope. As Figure S2 showed little CCRF-CEM cells or K562 cells was captured by KH1C12/c-MWNT, indicating the excellent specificity of our present cytosensor.