AIE active piperazine appended naphthalimide-BODIPYs: Photophysical properties and applications in live cell lysosomal tracking

Bhupendra Kumar Dwivedi,^a Roop Shikha Singh,^a Afsar Ali,^a Vinay Sharma,^b Shaikh M Mobin,^b and Daya Shankar Pandey^{*a}

^aDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi-221 005 (UP), India

^bSchool of Basic Sciences, Discipline of Chemistry, Indian Institute of Technology Indore, Indore–453 552 (MP), India

Contents

1.	General information
2.	Experimental details
3.	¹ H, ¹¹ B, ¹³ C, and ¹⁹ F NMR spectra of 5A–5D , 6A–6D and NPB1–NPB4 S13–S28
4.	Mass spectra of 5A–5D , 6A–6D and NPB1–NPB4
5.	Absorption and emission spectra and photographs showing emission color under UV
	irradiation (365 nm) in different solvents of varying polarities for
	NPB1–NPB3
6.	Plot of emission intensity vs solvent polarity parameter (Δf) in solvents of varying
	polarities for NPB1–NPB3
7.	Excitation spectra for NPB1–NPB3
8.	Emission spectra for NPB1–NPB3 with varying hexane fractions
9.	Emission spectra for NPB1–NPB3 with varying temperature
10.	Plot of emission intensity <i>vs</i> temperature for NPB1–NPB4
11.	Absorption and emission spectra of NPB1–NPB3 with varying water fractionsS44–S45
12.	Emission intensity changes with varying water fractions for NPB1–NPB4
13.	DLS spectra for NPB1–NPB4
14.	SEM images for NPB1–NPB4
15.	TEM images for NPB1–NPB4
16.	Emission spectra and plot of maximum emission intensity vs glycerol fraction for
	NPB1–NPB4 in methanol/glycerol mixtures at varying f_g

17.	Emission decay profiles for NPB1–NPB3 at varying f_w
18.	DFT optimized structures for NPB1–NPB4
19.	HOMO-LUMO diagrams for NPB1–NPB3
20.	UV/Vis spectra of NPB1–NPB4 obtained from TD-DFT calculations
21.	Absorption and emission spectra of NPB1–NPB3 with varying pH values
22.	Time-dependent Absorption spectra of NPB1-NPB4 under irradiation of visible light
	(400-700 nm)
23.	Cytotoxicity profile for NPB1–NPB4 against HeLa cell line
24.	Bio-imaging of HeLa cells following treatment with NPB1–NPB4
25.	Confocal images of HeLa cells following treatment with NPB1-NPB4 and co-stained
	with Hoechst 33342
26.	Flow cytometry analysis of cell staining using NPB1–NPB4
27.	Table S1 showing photophysical data for NPB1–NPB4 in different solvents
28.	Table S2 showing quantum yields for NPB1–NPB4 in Different Solvent
29	Table S3 showing fluorescence data for NPB1–NPB4 in THE/bexane mixture at varying
_,.	hexane fractions
30.	Table S4 showing emission maxima (λ_{em}) of lower energy band (TICT emission) for
	NPB1–NPB4 with varying temperature
31.	Table S5 showing photophysical data for NPB1–NPB4 in THF/water mixture at varying
	water fractions
32.	Table S6 showing Emission spectra of NPB1–NPB4 with varying glycerol volume
	tractions
33.	Table S7 showing time resolved fluorescence data for NPB1-NPB4 at varying water
	fractions
34.	Table S8 showing crystallographic parameters for NPB1, NPB2 and NPB4
35.	Table S9-S10 showing selected bond lengths/angles for NPB1-NPB4 from crystal
	structure and DFT calculations

36. Table S11–12 showing dihedral angles for NPB1–NPB4 from crystal structures and DFT
calculations
37. Table S13 showing the Summary of the dominant electronic transitions observed in
UV/Vis spectra of compounds (NPB1-NPB4) obtained from TD-DFT calculationsS66
38. Crystal packing showing C–H··· π interactions for NPB1 , NPB3 and NPB4
39. Crystal packing showing C–H···O interactions for NPB1, NPB3 and NPB4S70–S72
40. Crystal packing showing C–H···H–C interactions for NPB1 and NPB3
41. Crystal packing showing C–H…F–B interactions for NPB1, NPB3 and NPB4
42. Crystal packing showing H–C···F–B interactions for NPB1
43. References

General information - ¹H, ¹¹B, ¹³C and ¹⁹F spectra have been acquired on a JEOL AL 500/300 FT-NMR spectrometer using tetramethylsilane $Si(CH_3)_4$ as an internal reference. Electrospray ionization mass spectrometric (ESI-MS) measurements have been made on a Bruker Daltonics Amazon SL ion trap mass spectrometer (micrOTOF-Q II 10348). Electronic absorption and fluorescence spectra have been acquired on Shimadzu UV-1800 and Perkin-Elmer LS 55 spectrometers respectively. Absolute fluorescence quantum yields of the solid samples were measured using a calibrated Horiba JOBIN YVON integrating sphere instrument. SEM images were obtained on a JEOL JSM 840A Scanning Electron Microscope. TEM image were acquired on EM-410 LS Transmission Electron Microscope. Crystal data for NPB1 and NPB3 were collected on a Bruker APEX II diffractometer at room temperature with Mo K α radiation (λ = 0.71073 Å). Data for NPB4 was collected on a dual source super nova CCD system from Agilent Technologies (Oxford Diffraction) at room temperature with Cu K α radiation ($\lambda = 1.54184$ Å). The structures were solved by direct methods (SHELXS 97) and refined by full-matrix least squares on F^2 (SHELX 97).¹ Non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were geometrically fixed and refined using a riding model. Computer program PLATON was used for analyzing interaction and stacking distances.² The CCDC deposition Nos. 1577071 (NPB1), 1577072 (NPB3) and 1577073 (NPB4), contain supplementary crystallographic data for this paper. An Olympus confocal laser scanning microscope was used for cellular imaging studies while BD LSRFortessa was employed for flow cytometry. MTT plates were read on a BioTek microplate reader.

Theoretical studies. Quantum chemical calculations have been performed at B3LYP Density Functional Theory (DFT) level using B3LYP/6-31G** for **NPB1–NPB4**.³ The geometry optimization and frequency calculations have been performed using Gaussian 09 suits of program.⁴

Experimental details

Reagents. The solvents were dried and distilled prior to use following standard literature procedures.⁵ Acenaphthene, methyl amine, ethyl amine, hexyl amine, octyl amine, piperazine, 4-fluorobenzaldehyde, pyrrole, trifluoroacetic acid, 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), triethylamine and boron trifluoride diethyl etherate were procured from Sigma Aldrich, India and used as received without further purifications.

Scheme 1 Synthetic route to NPB1–NPB4.

6-Bromo-benzo[de]isochromene-1,3-dione (2) was synthesized following the reported method.⁶

6-Bromo-2-methyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (3A) was synthesized following the reported method.⁷

6-Bromo-2-ethyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (3B) was synthesized following the reported method.⁸

6-Bromo-2-hexyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (3C) was synthesized following the reported method.⁹

6-Bromo-2-octyl-1H-benzo[de]isoquinoline-1,3(2H)-dione (3D) was synthesized following the reported method.⁷

4-(Piperazin-1-yl)benzaldehyde (4) was synthesized following the reported method.^{10,11}

Synthesis of 4-(4-(2-methyl-1,3-dioxo-2,3-dihydro-1H-benzo-[de]isoquinolin-6-yl)piperazin-1-yl)benzaldehyde (5A): Compound 4 (0.228 g, 1.2 mmol), and K₂CO₃ (0.663 g, 4.8 mmol) were dissolved in DMF (20 ml). After stirring for 30 min, 4-bromo-N-methylnaphthalimide 3A (0.290 g, 1 mmol) was added it and subsequently the reaction mixture was refluxed for 24 h. After completion of reaction, potassium carbonate was removed by filtration and solvent evaporated under reduced pressure. The residue thus obtained was extracted using EtOAc (100 ml) and organic layer washed with H₂O followed by saturated NaCl solution. The organic layer was dried over anhydrous sodium sulphate and solvent was removed under reduced pressure to afford crude product which was further purified using column chromatography (Silica gel, DCM/hexane as eluent). 5A was isolated as a light yellow colored solid. Yield: 0.333 g, 83.4%. ¹H NMR (500 MHz, CDCl₃): δ = 3.42 (t, 4H, piperazine-H), 3.54 (s, 3H, methyl-H), 3.70 (t, 4H, piperazine-H), 7.02 (d, 2H, phenyl-H), 7.26 (s, 1H, naphthalene-H), 7.73 (d, 1H, naphthalene-H), 7.81 (d, 2H, phenyl-H), 8.46 (d, 1H, naphthalene-H), 8.54 (d, 1H, naphthalene-H), 8.61(d, 1H, naphthalene-H), 9.82(s, 1H, aldehyde-H); ¹³C NMR (125 MHz, CDCl₃) δ = 27.10, 48.44, 52.76, 113.55, 114.11, 114.59, 115.25, 117.42, 123.33, 126.10, 126.30, 127.00, 127.91, 129.78, 130.01, 131.27, 131.31, 131.95, 132.50, 134.05, 155.31, 155.47, 164.26, 164.71, 190.59 ppm; IR (KBr pellet): 2925, 2829, 2727, 1695, 1649, 1598, 1514, 1450, 1398, 1360, 1310, 1284, 1227, 1170, 1054, 1038, 1009, 976, 925, 817, 783, 759, 660, 681, 644, 622, 511 cm⁻¹.

Synthesis of 4-(4-(2-ethyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)piperazin-1yl)benzaldehyde (5B): It was prepared following the above procedure for 5A using 4-bromo-Nethylnaphthalimide (3B) (0.304 g, 1.0 mmol) in place of 3A. It was isolated as a light yellow coloured solid. Yield: 0.335 g, 81%. ¹H NMR (500 MHz, CDCl₃) δ = 1.33 (t, 3H, methyl-H), 3.43 (t, 4H, piperazine-H), 3.72 (s, 4H, piperazine-H), 4.24 (d, 2H, methylene-H), 7.04 (d, 2H, phenyl-H), 7.27 (t, 1H, naphthalene-H), 7.74 (s, 1H, naphthalene-H), 7.83 (d, 2H, phenyl-H), 8.47(d, 1H, naphthalene-H), 8.55 (d, 1H, naphthalene-H), 8.62 (d, 1H, naphthalene-H), 9.84 (s, 1H, aldehyde-H); ¹³C NMR (75 MHz, CDCl₃) δ = 13.38, 30.90, 35.37, 47.57, 52.70, 114.04, 115.19, 117.63, 123.49, 126.01, 126.25, 127.89, 129.79, 131.17, 131.86, 132.33, 154.89, 155.12, 163.72, 164.16, 190.47 ppm; IR (KBr pellet): 2923, 2817, 2737, 1688, 1648, 1594, 1516, 1451, 1387, 1345, 1225, 1170, 1086, 1064, 1038, 995, 941, 914, 882, 868, 787, 761, 716, 644, 622, 519 cm⁻¹. Synthesis of 4-(4-(2-hexyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)piperazin-1yl)benzaldehyde (5C): It was also prepared following the same method as adopted for 5A except that 4-bromo-N-hexylnaphthalimide (0.388 g, 1.0 mmol) 3C was used as a reagent in place of 3A. This compound also separated as a light yellow colored solid. Yield: 0.372 g, 79.2%. ¹H NMR (500 MHz, CDCl₃) δ = 0.88 (t, 3H, methyl-H), 1.33–1.44 (m, 6H, methylene-H), 1.72 (t, 2H, methylene-H), 3.43 (t, 4H, piperazine-H), 3.72 (t, 4H, piperazine-H), 4.16 (t, 2H, methylene-H), 7.04 (d, 2H, phenyl-H), 7.27 (t, 1H, naphthalene-H), 7.74 (m, 1H, naphthalene-H), 7.82 (d, 2H, phenyl-H), 8.46 (d, 1H, naphthalene-H), 8.54 (d, 1H, naphthalene-H), 8.61 (d, 1H, naphthalene-H), 9.84 (s, 1H, aldehyde-H); ¹³C NMR (125 MHz, CDCl₃) δ = 14.03, 22.53, 26.77, 28.07, 31.53, 40.35, 47.50, 52.64, 113.64, 113.98, 115.13, 117.53, 123.40, 125.99, 126.17, 127.80, 129.75, 131.16, 131.84, 132.33, 154.86, 155.08, 163.87, 164.31, 190.47 ppm; IR (KBr pellet): 2925, 2927, 2837, 1694, 1653, 1596, 1514, 1451, 1527, 1389, 1353, 1274, 1225, 1173, 1088, 1001, 922, 810, 783, 756, 676, 667 657, 641, 622 cm⁻¹.

Synthesis of 4-(4-(2-octyl-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-6-yl)piperazin-1yl)benzaldehyde (5D): It was prepared following the mthod employed for 5A using 4-bromo-Noctylnaphthalimide 3D (0.388 g, 1.0 mmol) in place of 3A. It was isolated as a light yellow colored solid. Yield: 0.433 g, 87%. ¹H NMR (500 MHz, CDCl₃) $\delta = 0.87$ (t, 3H, methyl), 1.27–1.42 (m, 10H, methylene-H), 1.72 (t, 2H; methylene-H), 3.40 (d, 4H, piperazine-H), 3.72 (d, 4H, piperazine-H), 4.16 (t, 2H, methylene-H), 7.04 (d, 2H, phenyl-H), 7.27 (d, 1H, naphthalene-H), 7.75 (m, 1H, naphthalene), 7.82 (d, 2H, phenyl-H), 8.46 (d, 1H, naphthalene-H), 8.54 (d, 1H, naphthalene-H), 8.61 (d, 1H, naphthalene-H), 9.84 (s, 1H, aldehyde-H); ¹³C NMR (125 MHz, CDCl₃) $\delta = 14.06$, 22.60, 27.14, 28.14, 29.32, 31.79, 40.38, 47.52, 52.66, 113.64, 113.99, 115.14, 117.55, 123.42, 126.00, 126.19, 127.81, 129.76, 131.19, 131.86, 132.35, 154.88, 155.09, 163.89, 164.33, 190.50 ppm; IR (KBr pellet): 2925, 2852, 2720, 1698, 1656, 1600, 1516, 1451, 1388, 1358, 1226, 1174, 1102, 926, 818, 787, 759, 512 cm⁻¹.

Synthesis of 6-(4-(4-(di(1H-pyrrol-2-yl)-methyl)-phenyl)-piperazin-1-yl)-2-methyl-1H-benzo [de]isoquinoline-1,3-(2H)-dione (6A): To a stirring solution of compound 5A (1.598 g, 4.0 mmol) in pyrrole (10.0 ml) catalytic amounts of trifluoroacetic acid (3 drops) was added and the reaction mixture stirred overnight at room temperature. After completion of the reaction (monitored by TLC) ensuing solution was concentrated to dryness under reduced pressure and the rude product thus obtained was purified by column chromatography (SiO₂; ethylacetate/hexane). The yellow colored band was collected and concentrated to afford the desired product. Yield: 1.609 g, 78%. ¹H NMR (500 MHz, CDCl₃) δ = 3.43–3.49 (t, 8H, piperazine-H), 3.56 (s, 3H, methyl-H), 5.45 (s, 1H, methine-H), 5.94 (s, 2H, pyrrole-H), 6.17 (d, 2H, pyrrole-H), 6.71 (d, 2H, pyrrole-H), 6.98 (d, 2H, phenyl-H), 7.17 (d, 2H, phenyl-H), 7.26 (t, 1H, naphthalene-H), 7.72 (s, 1H, naphthalene-H), 7.97 (br, 2H, pyrrole N-H), 8.47 (d, 1H, naphthalene-H), 8.55 (d, 1H, naphthalene-H), 8.61 (d, 1H, naphthalene-H); ¹³C NMR (125 MHz, CDCl₃) δ = 27.02, 29.79, 43.24, 49.62, 53.18, 107.10, 108.50, 115.17, 116.53, 117.08, 117.18, 123.30, 125.94, 126.32, 129.32, 129.86, 130.28, 131.28, 132.64, 132.95, 133.94, 150.00, 155.82, 164.40, 164.87 ppm; IR (KBr pellet): 3362, 3097, 2954, 2923, 2828, 1693, 1654, 1589, 1513, 1452, 1413, 1397, 1363, 1287, 1230, 1084, 1038, 784, 758, 720 cm⁻¹; ESI-MS: m/z calcd for C₃₂H₂₉N₅O₂ [M-H]⁺: 514.2; found: 514.2.

Synthesis of 6-(4-(4-(di(1H-pyrrol-2-yl)methyl)-phenyl)-piperazin-1-yl)-2-ethyl-1H-benzo [de]isoquinoline-1,3-(2H)-dione (6B): This compound was prepared following the above procedure for 6A using 5B (1.654 g, 4.0 mmol) in place of 5A. Yield: 1.589 g, 75%. ¹H NMR (500 MHz, CDCl₃) δ = 1.33 (t, 3H, methyl-H), 3.42 (d, 4H, piperazine-H), 3.48 (d, 4H, piperazine-H), 4.24 (d, 2H, methylene-H), 5.45 (s, 1H, methine-H), 5.94 (s, 2H, pyrrole), 6.17 (d, 2H, pyrrole), 6.71 (d, 2H, pyrrole-H), 6.98 (d, 2H, phenyl-H), 7.17 (d, 2H, phenyl-H), 7.26 (t, 1H, naphthalene-H), 7.72 (t, 1H, naphthalene-H), 7.96 (br, 2H, pyrrole N-H), 8.52 (d, 1H, naphthalene-H), 8.60 (d, 1H; naphthalene-H), 8.61 (t, 1H; naphthalene-H); ¹³C NMR (125 MHz, CDCl₃) δ = 13.48, 35.44, 43.25, 49.62, 53.17, 107.11, 108.52, 115.15, 116.53, 117.16, 117.31, 123.51, 125.92, 126.33, 129.31, 129.96, 130.15, 131.20, 132.53, 132.94, 133.92, 150.01, 155.72, 163.91, 164.36 ppm; IR (KBr pellet): 3355, 3096, 2972, 2926, 2828, 1691, 1648, 1607, 1588, 1512, 1451, 1431, 1386, 1344, 1233, 1200, 1135, 1078, 1061, 993, 941, 783, 720 cm⁻¹; ESI-MS: m/z calcd for C₃₃H₃₁N₅O₂ [M+H]⁺: 530.3; found: 530.3.

Synthesis of 6-(4-(4-(di(1H-pyrrol-2-yl)methyl)phenyl)-piperazin-1-yl)-2-hexyl-1H-benzo [de]isoquinoline-1,3-(2H)-dione (6C): This compound was prepared by following the above procedure for 6A using compound 5C (1.991 g, 4.0 mmol) in place of 5A. Yield: 1.734 g, 74%. ¹H NMR (500 MHz, CDCl₃) δ = 0.88 (t, 3H; methyl-H), 1.25–1.42 (m, 6H, methylene-H), 1.73 (t, 2H; methylene-H), 3.42–3.48 (m, 8H, piperazine-H), 4.16 (t, 2H, methylene-H), 5.44 (s, 1H,

methine-H), 5.93 (s, 2H, pyrrole-H), 6.16 (m, 2H, pyrrole-H), 6.70 (t, 2H, pyrrole-H), 6.96 (d, 2H, phenyl-H), 7.16(d, 2H, phenyl-H), 7.26(d, 1H, naphthalene-H), 7.70 (t, 1H, naphthalene-H), 7.98 (br, 2H, pyrrole N-H), 8.45 (d, 1H, naphthalene-H), 8.52 (d, 1H, naphthalene-H), 8.59 (d, 1H, naphthalene); ¹³C NMR (125 MHz, CDCl₃) δ = 14.20, 22.66, 26.91, 28.20, 29.75, 31.67, 40.47, 43.24, 49.61, 53.16, 107.11, 108.50, 115.16, 116.52, 117.18, 117.27, 123.47, 125.93, 126.31, 129.31, 129.94, 130.14, 131.23, 132.57, 132.96, 133.94, 150.00, 155.69, 164.09, 164.54 ppm; IR (KBr pellet): 3354, 3091, 2961, 2927, 2854, 1692, 1647, 1609, 1588, 1511, 1451, 1427, 1351, 1359, 1230, 1178, 1140, 1091, 1025, 925, 925, 884, 832, 781, 753, 715, 583, 540 cm⁻¹; HRMS (ESI): m/z calcd for C₃₇H₃₉N₅O₂ [M+H]⁺: 586.3182; found: 586.3177.

Synthesis of 6-(4-(4-(di(1H-pyrrol-2-yl)methyl)-phenyl)-piperazin-1-yl)-2-methyl-1H-benzo [de]-isoquinoline-1,3-(2H)-dione (6D): It was prepared following the above procedure for **6A** using compound **5D** (1991 mg, 4.0 mmol) in place of **5A**. Yield: 1.817 g, 74%. ¹H NMR (CDCl₃, $\delta = 0.87$ (t, 3H, methyl-H), 1.25–1.43 (m, 10H, methylene-H), 1.71 (m, 2H, methylene-H), 3.41-3.48 (m, 8H, piperazine-H), 4.15 (t, 2H, methylene-H), 5.44 (s, 1H, methine-H), 5.93 (s, 2H, pyrrole-H), 6.17 (m, 2H, pyrrole-H), 6.71 (d, 2H, pyrrole-H), 6.96 (d, 2H, phenyl-H), 7.17 (d, 2H, phenyl-H), 7.25(t, 1H, naphthalene-H), 7.71 (t, 1H, naphthalene-H), 8.00 (br, 2H, pyrrole N-H), 8.45 (d, 1H, naphthalene-H), 8.53 (d, 1H, naphthalene-H), 8.59 (d, 1H, naphthalene); ¹³C NMR (125 MHz, CDCl₃) $\delta = 14.07$, 22.61, 27.15, 28.15, 29.21, 29.34, 31.80, 40.37, 43.13, 49.50, 53.05, 106.99, 108.37, 115.04, 116.40, 117.08, 117.14, 123.34, 125.82, 126.18, 129.21, 129.82, 130.03, 131.13, 132.46, 132.86, 133.85, 149.88, 155.59, 163.98, 164.43 ppm; IR (KBr pellet): 3367, 3099, 2955, 2925, 2854, 1694, 1652, 1612, 1588, 1513, 1452, 1428, 1389, 1358, 1233, 1093, 1027, 928, 885, 837, 785, 760, 716, 586, 540 cm⁻¹; HRMS (ESI): m/z calcd for C₃₉H₄₃N₅O₂ [M-H]⁺: 612.3339; found: 612.3333.

Synthesis of NPB1: To a stirring solution of DDQ (0.545 g, 2.4 mmol) in benzene (20 ml) **6A** (1.031 mg, 2.0 mmol) dissolved in dichloromethane was added dropwise over an hour. The reaction mixture was stirred for an additional 3 h. After completion of the reaction the contents of the flask was evaporated to dryness under reduced pressure. After dissolution of the crude product in DCM, triethylamine (0.75 mL) and BF₃.Et₂O (3.0 mL) were successively added to it and the reaction mixture stirred for 30 min at room temperature. The progress of reaction was monitored by TLC and after completion the reaction mixture was filtered and the filtrate washed

thrice with water, extracted with dichloromethane and concentrated to dryness under reduced pressure. Crude product thus obtained was charged on a flash column (SiO₂; CH₂Cl₂/hexane). The dark orange-red band was collected and concentrated to dryness to afford the desired product. Yield: 0.505 g, 45%. Anal. Calcd for C₃₂H₂₆BF₂N₅O₂: C, 68.46; H, 4.67; N, 12.48. Found: C, 68.32; H, 4.69; N, 12.48. ¹H NMR (500 MHz, CDCl₃) δ = 3.48 (t, 4H, piperazine-H), 3.57 (s, 3H, methyl-H), 3.70 (t, 4H, piperazine-H), 6.57 (t, 2H, pyrrolic-H), 7.04 (d, 2H, pyrrole-H), 7.12 (d, 2H; phenyl-H), 7.30 (t, 1H, naphthalene-H), 7.61 (d, 2H, phenyl-H), 7.76 (t, 1H, naphthalene-H), 7.92 (s, 2H, pyrrole-H), 8.50 (d, 1H, naphthalene-H), 8.57 (d, 1H, naphthalene-H), 8.63 (d, 1H, naphthalene-H); ¹³C NMR (125 MHz, CDCl₃) δ = 27.05, 48.17, 52.92, 114.76, 115.30, 117.48, 118.15, 123.39, 124.95, 126.13, 126.36, 129.85, 131.15, 131.36, 132.55, 132.76, 134.76, 142.92, 147.72, 153.00, 155.41, 164.33, 164.78 ppm; ¹¹B NMR (160.4 MHz, CDCl₃) δ = -0.642 ppm (t); ¹⁹F NMR (470.6 MHz, CDCl₃) δ = -144.99 ppm (q); IR (KBr pellet): 2924, 2852, 1698, 1656, 1598, 1579, 1553, 1528, 1452, 1469, 1389, 1204, 1122, 1080, 877, 911, 828, 777, 713 cm⁻¹; HRMS (ESI): m/z calcd for C₃₂H₂₆BF₂N₅O₂ [M+Na]⁺: 584.2045; found: 584.2041.

Synthesis of NPB2: It was prepared following the above procedure for **NPB1** using **6B** (1.059 g, 2 mmol) in place of **6A**. Yield: 0.150 g, 13%. Anal. Calcd for $C_{33}H_{28}BF_2N_5O_2$: C, 68.88; H, 4.90; N, 12.17. Found: C, 68.10; H, 4.92; N, 12.17. ¹H NMR (500 MHz, CDCl₃) δ = 1.34 (t, 3H, methyl-H), 3.47 (d, 4H, piperazine-H), 3.71 (d, 4H, piperazine-H), 4.25 (m, 2H, methylene-H), 6.57 (m, 2H, pyrrole-H), 7.04 (d, 2H, pyrrole-H), 7.12 (d, 2H, phenyl-H), 7.30 (t, 1H, naphthalene-H), 7.61 (d, 2H, phenyl-H), 7.76 (d, 1H, naphthalene-H), 7.92 (s, 2H, pyrrole-H), 8.49 (d, 1H, naphthalene-H), 8.57 (d, 1H, naphthalene-H), 8.63 (d, 1H, naphthalene-H); ¹³C NMR (125 MHz, CDCl₃) δ = 13.49, 35.49, 48.17, 52.91, 114.75, 115.27, 117.68, 118.14, 123.58, 124.93, 126.11, 126.36, 129.95, 131.15, 131.29, 132.47, 132.76, 134.77, 142.91, 147.73, 153.00, 155.33, 163.87, 164.30 ppm; ¹¹B NMR (160.4 MHz, CDCl₃) δ = -0.642 ppm (t); ¹⁹F NMR (470.6 MHz, CDCl₃) δ = -144.99 ppm (q); IR (KBr pellet): 2925, 2853, 1691, 1654, 1593, 1531, 1472, 1387, 1349, 1263, 1236, 1202, 1120, 1079, 977, 910, 780, 748 cm⁻¹; ESI-MS: m/z calcd for C₃₃H₂₈BF₂N₅O₂ [M+Na]⁺: 598.2; found: 598.2.

Synthesis of NPB3: It was prepared following the above procedure for NPB1 using 6C (1.228 g, 2 mmol) in place of 6A. Yield: 0.215 g, 17%. Anal. Calcd for $C_{37}H_{36}BF_2N_5O_2$: C, 70.37; H, 5.75; N, 11.09. Found: C, 69.05; H, 5.76; N, 11.23. ¹H NMR (500 MHz, CDCl₃) δ = 0.89 (t, 3H,

methyl), 1.35–1.44 (m, 6H, methylene-H), 1.73 (t, 2H, methylene-H), 3.47 (m, 4H, piperazine-H), 3.70 (d, 4H, piperazine-H), 4.17 (t, 2H, methylene-H), 6.57 (m, 2H, pyrrole-H), 7.04 (d, 2H, pyrrole-H), 7.12 (d, 2H, phenyl-H), 7.30(t, 1H, naphthalene-H), 7.60 (d, 2H, phenyl-H), 7.76 (d, 1H, naphthalene-H), 7.91 (s, 2H, pyrrole-H), 8.49 (d, 1H, naphthalene-H), 8.56 (d, 1H, naphthalene-H), 8.62 (d, 1H, naphthalene-H); ¹³C NMR (125 MHz, CDCl₃) δ = 14.16, 22.66, 26.91, 28.20, 31.67, 40.51, 47.04, 48.17, 52.91, 114.75, 115.28, 117.65, 118.13, 123.55, 124.91, 126.12, 126.35, 129.94, 131.16, 131.32, 132.50, 132.77, 134.75, 142.89, 147.73, 153.01, 155.31, 164.04, 164.48 ppm; ¹¹B NMR (160.4 MHz, CDCl₃) δ = -0.652 ppm (t); ¹⁹F NMR (470.6 MHz, CDCl₃) δ = -144.97 ppm (q); IR (KBr pellet): 2968, 2927, 2837, 1694, 1653, 1592, 1588, 1560, 1533, 1512, 1470, 1411, 1389, 1353, 1263, 1219, 1200, 1115, 1077, 1053, 976, 908, 831, 777, 758, 739, 706, 674 cm⁻¹; HRMS (ESI): m/z calcd for C₃₇H₃₆BF₂N₅O₂ [M+Na]⁺: 654.2829.

Synthesis of NPB4: It was prepared following the above procedure for **NPB1** using **6D** (1.228 g, 2.0 mmol) in place of **6A**. Yield: 0.304 g, 23%. Anal. Calcd for C₃₉H₄₀BF₂N₅O₂: C, 71.02; H, 6.11; N, 10.62. Found: C, 70.45; H, 6.14; N, 10.62. ¹H NMR (500 MHz, CDCl₃) δ = 0.87 (t, 3H; methyl-H), 1.26–1.43 (m, 10H; methylene-H), 1.73 (s, 2H; methylene-H), 3.47 (d, 4H, piperazine-H), 3.70 (s, 4H, piperazine-H), 4.17 (t, 2H, methylene-H), 6.57 (t, 2H, pyrrole-H), 7.04 (d, 2H, pyrrole-H), 7.12 (d, 2H, phenyl-H), 7.31 (d, 1H, naphthalene-H), 7.61 (d, 2H, phenyl-H), 7.75 (s, 1H, naphthalene-H), 7.92 (s, 2H, pyrrole-H), 8.49 (d, 1H, naphthalene-H), 8.56 (d, 1H, naphthalene-H), 8.62 (d, 1H, naphthalene-H); ¹³C NMR (125 MHz, CDCl₃) δ = 13.45, 22.00, 26.53, 27.54, 28.59, 28.72, 31.19, 39.79, 47.44, 52.18, 114.02, 114.55, 116.94, 117.41, 122.85, 124.19, 125.39, 125.61, 129.18, 130.42, 130.58, 131.76, 132.03, 134.03, 142.18, 146.99, 152.27, 154.56, 163.30, 163.75 ppm; ¹¹B NMR (160.4 MHz, CDCl₃) δ = -0.652 ppm (t); ¹⁹F NMR (470.6 MHz, CDCl₃) δ = -144.99 ppm (q); IR (KBr pellet): 2925, 2854, 1746, 1695, 1656, 1599, 1533, 1513, 1469, 1388, 1355, 1263, 1234, 1201, 1120, 1078, 1047, 979, 912, 783, 744 cm⁻¹; ESI-MS: m/z calcd for C₃₉H₄₀BF₂N₅O₂ [M+Na]⁺: 682.3; found: 682.3.

Preparation of buffer solutions: Various standard buffer solutions were prepared by using 50 mM of potassium chloride (pH 1–2), potassium hydrogen phthalate (pH 3–5), potassium dihydrogen phosphate (pH 6–8) and pH measured using pH-meter. In a typical experiment, a mixture of 1:1 buffer and acetonitrile was treated with the probe (**NPB1–NPB4**) solution (50 μ M). Then the pH adjusted by adding 0.1M of NaOH or 0.1 M HCl solution.

Cytotoxicity Assessment: To explore the applicability of **NPB1–NPB4** as bioimaging agents their toxicity has been scruitinized against live cells. Cytotoxicity of **NPB1–NPB4** has been investigated on Human cervical cancer cell line (HeLa) using the standard MTT assays.¹² In this regard, HeLa cells were cultured in a T25 flask using minimum essential media (MEM – Himedia) containing 10% fetal bovine serum and 1% penicillin streptomycin and then seeded in a 96 well plate and incubated for 24 h at 37°C, 5% under CO₂ humidified environment. The cells were treated with **NPB1–NPB4** in a concentration range of 10–50µM for a period of 16 h and and 48h separately. After treatment the media containing **NPB1–NPB4** was replaced with phenol red free MEM media containing 0.5 mg/mL 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and incubated for 4 h. Subsequently, MTT containing media was replaced with 100 µL DMSO in each well and after 10 min incubation the plate was read under a Biotek plate-reader at 540 nm. The experiment was performed in triplicate and cell viability calculated using absorbance at 540 nm.

% cell viability = [Mean O.D. of the treated cell / Mean O.D. of the control] * 100

Bioimaging and Lysosome tracking studies: To investigate cellular uptake of NPB1–NPB4 and its applicability in bioimaging, HeLa cells seeded in 27 mm confocal dishes were treated with 10 μ M of these compounds and incubated for 30 min Subsequently, the cells were washed thrice with 1X PBS. Intracellular fluorescence was studied by confocal laser scanning microscope using an excitation laser (λ , 488 nm) and emission recorded in the range 500–550 nm. For Lysotracking studies, HeLa cells were first stained with 50 nM Lysotracker red and incubated for 15 min and washed with 1X PBS thrice and imaged under confocal laser scanning microscope and emission was recorded in red channel. Further, 10 μ M of NPB1–NPB4 was added without changing the disc position on the microscope and emission was recorded in green channel. The image processing and Pearson's co-localization coefficient was calculated using Olympus FluoView10-ASW 4.2 Viewer software. In order to further investigate the generality of cell staining by NPB1–NPB4, flow cytometry was performed using BD LSRFortessa. HeLa cells were seeded in a 6 well plate and treated with 10 μ M of NPB1–NPB4 for 30 min keeping one unstained control. Further, the cells were tripsinized and re-suspended in a 1X PBS and subjected to flow cytometry.

Fig. S1 1 H (a) and 13 C (b) NMR spectra of 5A in CDCl_{3.}

Fig. S2 1 H (a) and 13 C (b) NMR spectra of 5B in CDCl₃.

Fig. S3 1 H (a) and 13 C (b) NMR spectra of 5C in CDCl₃.

Fig. S4 1 H (a) and 13 C (b) NMR spectra of 5D in CDCl₃

Fig. S5 1 H (a) and 13 C (b) NMR spectra of 6A in CDCl₃.

Fig. S6 1 H (a) and 13 C (b) NMR spectra of 6B in CDCl₃.

Fig. S7 1 H (a) and 13 C (b) NMR spectra of **6**C in CDCl₃.

Fig. S8 1 H (a) and 13 C (b) NMR spectra of **6D** in CDCl₃.

Fig. S9 1 H (a) and 13 C (b) NMR spectra of NPB1 in CDCl₃.

Fig. S10 11 B (c) and 19 F (d) NMR spectra of NPB1 in CDCl₃.

Fig. S11 1 H (a) and 13 C (b) NMR spectra of NPB2 in CDCl₃.

Fig. S12 11 B (c) and 19 F (d) NMR spectra of NPB2 in CDCl₃.

Fig. S13 1 H (a) and 13 C (b) NMR spectra of NPB3 in CDCl₃.

Fig. S14 11 B (c) and 19 F (d) NMR spectra of NPB3 in CDCl₃.

Fig. S15 1 H (a) and 13 C (b) NMR spectra of NPB4 in CDCl₃.

Fig. S16 11 B (c) and 19 F (d) NMR spectra of NPB4 in CDCl₃.

Fig. S17 ESI-MS spectra of 6A.

Fig. S18 ESI-MS spectra of 6B.

Fig. S19 HRMS spectra of 6C.

Fig. S20 HRMS spectra of 6D.

S35

Fig. S25 Spectra in different solvents showing variation of intensity with solvent polarity: Absorption spectra (a) and its normalized representation (b), emission spectra (c) and its normalized representations (d) and photograph showing emission color change in different solvents under UV irradiation (λ_{ex} , 365 nm) (e) for **NPB1** (c, 50 µM, THF; λ_{ex} , 498 nm) [1,4-diox. = 1,4-dioxane, THF = tetrahydrofuran, DCM = dichloromethane, MeCN = acetonitrile, MeOH = methanol, DMF = N,N-methylformamide, DMSO = dimethylsulfoxide].

Fig. S26 Spectra in different solvents showing variation of intensity with solvent polarity: Absorption spectra (a) and its normalized representation (b), emission spectra (c) and its normalized representations (d) and photograph showing emission color change in different solvents under UV irradiation (λ_{ex} , 365 nm) (e) for **NPB2** (c, 50 µM, THF; λ_{ex} , 498 nm) [1,4-diox. = 1,4-dioxane, THF = tetrahydrofuran, DCM = dichloromethane, MeCN = acetonitrile, MeOH = methanol, DMF = N,N-methylformamide, DMSO = dimethylsulfoxide].

Fig. S27 Spectra in different solvents showing variation of intensity with solvent polarity: Absorption spectra (a) and its normalized representation (b), emission spectra (c) and its normalized representations (d) and photograph showing emission color change in different

solvents under UV irradiation (λ_{ex} , 365 nm) (e) for **NPB3** (c, 50 μ M, THF; λ_{ex} , 498 nm) [1,4diox. = 1,4-dioxane, THF = tetrahydrofuran, DCM = dichloromethane, MeCN = acetonitrile, MeOH = methanol, DMF = N,N-methylformamide, DMSO = dimethylsulfoxide].

Fig. S28 Plot of emission intensity *vs* solvent polarity parameter (Δf) for NPB1 (a), NPB2 (b), and NPB3 (c) (c, 50 μ M in THF, λ_{ex} , 498 nm) [THF = tetrahydrofuran, DCM = dichloromethane, MeCN = acetonitrile, MeOH = methanol, DMF = N,N-methylformamide, DMSO = dimethylsulfoxide].

Fig. S29 Excitation spectra of NPB1 (a), NPB2 (b), and NPB3 (c) at λ_{em} , 520 nm, 522 nm, and 526 nm respectively (c, 50 μ M in THF).

Fig. S30 Emission spectra of NPB1 (a), NPB2 (b), and NPB3 (c) with varying hexane volume fractions, (c, 50 μ M in THF, λ_{ex} , 498 nm).

Fig. S31 Emission spectra of NPB1 (a), NPB2 (b), and NPB3 (c) in THF with varying temperature, (c, 50 μ M in THF, λ_{ex} , 498 nm).

Fig. S32 Plot of emission intensity *vs* temperature (°C) for NPB1 (a), NPB2 (b), NPB3 (c), and NPB4 (d) (c, 50 μ M, THF; λ_{ex} , 498 nm).

Fig. S33 Absorption spectra for NPB1 (a), NPB2 (b) and NPB3 (c) in THF/water mixtures with varying water volume fractions (c, 50 μ M in THF, λ_{ex} , 498 nm).

Fig. S34 Emission spectra NPB1 (a), NPB2 (b) and NPB3 (c) in THF/water mixtures with varying water volume fractions (c, 50 μ M in THF, λ_{ex} , 498 nm).

Fig. S35 Emission intensity changes for NPB1 (a), NPB2 (b), NPB3 (c) and NPB4 (d) with varying water volume fractions, (c, 50 μ M in THF, λ_{ex} , 498 nm).

Fig. S36 DLS figures of **NPB1** (a), **NPB2** (b) and **NPB3** (c) and **NPB4** (d) at 99% f_w . (c, 50 μ M in THF, λ_{ex} , 498 nm).

Fig. S37 SEM images of the aggregates of **NPB1** (a), **NPB2** (b), **NPB3** (c) and **NPB4** (d) formed in a mixture of THF/water (f_w 99%; c, 50 μ M in THF).

Fig. S38 TEM images of the aggregates for **NPB1** (a), **NPB2** (b), **NPB3** (c) and **NPB4** (d) formed in a mixture of THF/water (f_w 99%; c, 50 μ M in THF).

Fig. S39 Emission spectra (a), (c), and (e) and plot of maximum emission intensity *vs* glycerol fraction (b), (d) and (f) for NPB1, NPB2 and NPB3, respectively in methanol/glycerol mixture, (c, 50 μ M in THF, λ_{ex} , 498 nm).

Fig. S40 Time-resolved emission decay profiles for **NPB1** (a) at 651nm, **NPB2** (b) at 645 nm, **NPB3** at 642 nm with varying f_{w} (c, 50 μ M in THF, λ_{ex} , 498 nm).

Fig. S41 DFT optimized structures of NPB1 (a), NPB2 (b), NPB3 (c) and NPB4 (d).

Fig. S42 Frontier molecular orbitals of **NPB1** (left), **NPB2** (middle) and **NPB3** (right) obtained from DFT calculations.

Fig. S43 UV/Vis spectra of NPB1 (a), NPB2 (b) from TD-DFT calculations.

UV/Vis spectra of NPB3 (a), NPB4 (b) from TD-DFT calculations

Fig. S45 Normalised representation of absorption spectra (a, c, e) and emission spectra (b, d f) for probes **NPB1**, **NPB2** and **NPB3** respectively in buffer solution at different pH.

Fig. S46 Time-dependent absorption spectra for **NPB1** (a), **NPB2** (b), **NPB3** (c), and **NPB4** (d) in DMSO under the irradiation of visible light (400–700 nm).

Fig. S47 Cytotoxicity profile for NPB1–NPB4 against HeLa cell line for 16 h.

Fig. S48 Cytotoxicity profile for NPB1–NPB4 against HeLa cell line for 48 h.

Fig. S49 Bio-imaging of HeLa cells following treatment with NPB1–NPB4.

Fig. S50 Confocal images of HeLa cells following treatment with **NPB1–NPB4** and co-stained with Hoechst 33342.

Fig. S51 Flow cytometry analysis of cell staining using NPB1 (1), NPB2 (2), NPB3 (3) and NPB4 (4).

solvents	NPB1			NPB2			
	λ_{ab}/nm	λ_{em}/nm	Stokes shift/nm	λ_{ab}/nm	λ_{em}/nm	Stokes shift/nm	
Hexane	498	516	18	497	522	25	
Benzene	501	583	82	501	583	82	
Toluene	501	589	88	501	588	89	
Chloroform	498	605	107	500	603	103	
1,4-dioxane	499	613	114	498	614	116	
THF	497	630	133	497	629	132	
DCM	498	627	129	498	630	132	
MeCN	493	n.d.	-	493	n.d.	-	
MeOH	494	641	147	494	641	147	
DMF	496	n.d.	-	496	n.d.	-	
DMSO	498	n.d.	-	497	n.d.	-	
solvents	NPB3				NP	B4	
	λ_{ab}/nm	λ_{em}/nm	Stokes shift/nm	λ_{ab}/nm	λ_{em}/nm	Stokes shift/nm	
Hexane	497	516	19	498	521	23	
Benzene	501	580	79	501	581	82	
Toluene	501	585	84	502	586	84	
Chloroform	500	600	100	500	603	103	
1,4-dioxane	498	611	113	498	611	613	
THF	497	626	129	497	626	129	
DCM	495	626	131	495	630	135	
MeCN	493	n.d.	-	493	n.d.	-	
MeOH	494	640	146	494	640	146	
DMF	497	n.d.	-	497	n.d.	-	
DMSO	498	n.d.	-	498	n.d.	-	

Table S1. Photophysical data for NPB1-NPB4 in different solvents with varying polarities

(c, 50 μ M in THF, λ_{ex} = 498 nm), Abbreviations: λ_{ab} = absorption maximum, λ_{em} = emission maximum).

Solvents	$\Phi_{\rm F}$ for NPB1	$\Phi_{\rm F}$ for NPB2	$\Phi_{\rm F}$ for NPB3	$\Phi_{\rm F}$ for NPB4
Hexane	0.517	0.509	0.503	0.478
Benzene	0.774	0.727	0.783	0.774
Toluene	0.579	0.521	0.571	0.577
1,4-dioxane	0.026	0.027	0.024	0.022
Chloroform	0.174	0.184	0.163	0.158
THF	0.010	0.008	0.008	0.009
DCM	0.162	0.157	0.148	0.173
MeCN	0.009	0.007	0.006	0.008
МеОН	0.010	0.011	0.010	0.012
DMF	0.013	0.012	0.013	0.018
DMSO	0.009	0.009	0.010	0.011
Water	0.070	0.097	0.131	0.155
(aggregated state)				
Solid state ^a	0.0925	0.1021	0.1276	0.1339

Table S2. Quantum yields for NPB1–NPB4 in different solvents

 $\Phi_{\rm F}$ = fluorescence quantum yield, $\Phi_{\rm F}$ in solution calculated by using Rhodamine 6G dye as standard ($\Phi = 0.95$ in water) and ^a absolute fluorescence quantum yield in solid state measured with a calibrated integrating sphere

Table S3. Fluorescence data for NPB1–NPB4 in THF/hexane mixture at varying hexane fractions

Hexane	Emission Wavelength (nm)								
(vol %)	NPB1	NPB2	NPB3	NPB4					
0%	520, 630	522, 629	526, 626	527, 627					
10%	525, 628	522, 629	519, 626	522, 626					
20%	525, 622	521, 625	519, 626	522, 624					
30%	525, 622	521, 625	519, 625	522, 623					
40%	525, 622	521, 625	519, 625	522, 623					
50%	525, 617	521, 619	519, 620	522, 623					
60%	524, 616	521, 615	519, 615	523, 618					
70%	524, 613	521, 608	519, 610	522, 614					
80%	524, 598	596	518, 603	521,600					
90%	575	567	520, 566	567					
100%	517	520	517	522					

(c, 50 μM in THF, $\lambda_{ex},$ 498 nm).

Temperature	NPB1	NPB2	NPB3	NPB4
(°C)	(λ_{em}/nm)	(λ_{em}/nm)	(λ_{em}/nm)	(λ_{em}/nm)
0	(520) n.d.	(522) n.d.	(526) n.d.	(527) n.d.
10	(520) 644	(522) 640	(526) 635	(527) 635
20	(520) 634	(522) 628	(526) 629	(527) 627
30	(520) 627	(522) 626	(526) 621	(527) 623
40	(520) 616	(522) 623	(526) 619	(527) 620
50	(520) 615	(522) 620	(526) 616	(527) 617
60	(520) 610	(522) 613	(526) 607	(527) 612

Table S4. Emission maxima (λ_{em}) of lower energy band (TICT emission) for **NPB1–NPB4** with varying temperature

(Values in parentheses denotes LE emission values, abbreviations: λ_{em} = emission maximum, and n.d. = not detectable)

Table	S5 .	Photophysical	data f	or	compounds	NPB1-N	PB4	in	THF/water	mixture	at	varying
water f	fracti	ions										

Water		NPB1			NPB2		
(vol %)	λ_{ab}/nm	λ_{em}/nm	Stokes shift	λ_{ab}/nm	λ_{em}/nm	Stokes shift	
0	497	520, 630	-	498	522, 629	-	
10 to 60	497	523, n.d.	-	497	523, n.d.	-	
70	497	523, n.d.	-	497	523, n.d.	-	
80	503	n.d., 645	142 nm	502	n.d., 629	127 nm	
90	504	n.d., 648	144 nm	503	n.d., 643	140 nm	
100	504	n.d., 651	146 nm	506	n.d., 645	139 nm	
Water		NPB3	_	NPB4			
(vol %)	λ_{ab}/nm	λ_{em}/nm	Stokes shift	λ_{ab}/nm	λ_{em}/nm	Stokes shift	
0	498	526, 626	-	498	527, 627	-	
10 to 60	497	523, n.d.	-	497	521, n.d.	-	
70	497	523, n.d.	-	502	n.d., 621	-	
80	499	n.d., 623	124 nm	502	n.d., 625	123 nm	
90	502	n.d., 634	132 nm	503	n.d., 634	131 nm	
100	503	n.d., 642	139 nm	516	n.d., 640	124 nm	

(c, 50 μ M in THF, λ_{ex} , 498 nm), Abbreviations: λ_{ab} = absorption maximum, λ_{em} = emission maximum, and n.d. = not detectable (signal too weak to be accurately determined).

Glycerol (vol %)	NPB1	NPB2	NPB3	NPB4	
	(λ_{em}/nm)	(λ_{em}/nm)	(λ_{em}/nm)	(λ_{em}/nm)	
THF	520, 630	522, 629	526, 626	527, 627	
Methanol	545, 641	544, 639	546, 640	547, 640	
10 to 60%	n.d.	n.d.	n.d.	n.d.	
70%	638	637	639	640	
80%	638	638	639	640	
90%	640	639	641	641	

 Table S6. Emission spectra of NPB1–NPB4 with varying glycerol volume fractions

Water (Vol %)			NPB1						NPI	32		
	λ_{em} (nm)	λ_{em} (nm)	1	τ_1/τ_2 (ns)	A	₁ /A ₂	λ_{ex} (nm)	λ _{em} (nm)	-	$\frac{\tau_1}{\tau_2}$ (ns)	A ₁	/A ₂
0 to 70	460	645	τ_1	n.d	A ₁	n.d.	460	645	τ_1	n.d	A ₁	n.d
			τ_2	n.d.	A ₂	n.d.			τ_2	n.d.	A ₂	n.d.
80	460	645	τ_1	0.70	A_1	0.94	460	645	τ_1	0.77	A ₁	0.8
			τ ₂	2.49	A ₂	0.06			τ_2	2.82	A ₂	0.1 9
90	460	645	τ_1	0.86	A ₁	0.93	460	645	τ_1	0.85	A ₁	0.8 7
			τ ₂	3.06	A ₂	0.07			τ ₂	2.56	A ₂	0.1
100	460	645	τ ₁	0.96	A ₁	0.94	460	645	τ_1	0.95	A ₁	0.8
			τ_2	3.68	A ₂	0.06			τ ₂	2.85	A ₂	0.1
Water (Vol %)		1	NPI	B3	1	1			NPI	34	I	1
	λ _{ex} (nm)	λ_{em} (nm)	τ	$(1/\tau_2)$		₁ /A ₂	λ_{ex} (nm)	λ _{em} (nm)	τ	₁ /τ ₂ ns)	A ₁	/A ₂
0 to 70	460	640	τ ₁	n.d	A ₁	n.d	460	640	τ_1	n.d	A ₁	n.d
			τ_2	n.d.	A ₂	n.d.	-		τ_2	n.d.	A ₂	n.d.
80	460	640	τ_1	0.48	A_1	0.14	460	640	τ_1	0.50	A ₁	0.1 5
			τ_2	0.15	A ₂	0.86			τ ₂	0.15	A ₂	0.8 5
90	460	640	τ ₁	0.86	A ₁	0.89	460	640	τ_1	0.80	A ₁	0.9
			τ ₂	2.69	A ₂	0.11			τ_2	2.64	A ₂	0.0
100	460	640	τ_1	0.90	A ₁	0.75	460	640	τ_1	0.84	A ₁	0.7 5
			τ_2	2.73	A ₂	0.25			τ_2	2.69	A ₂	0.2

Table S7. Time resolved fluorescence data for compounds NPB1–NPB4

⁽c, 50 μ M in THF, λ_{ex} , 498 nm), Abbreviations: λ_{ab} = absorption maximum, λ_{em} = emission maximum, and n.d. = not detectable (signal too weak to be accurately determined). Dynamic parameters determined from $I = A1 \exp(-t/\tau 1) + A2 \exp(-t/\tau 2)$, where A1/A2 and $\tau 1/\tau 2$ are the fractions (A) and lifetimes (τ)

Crystal Data	NPB1	NPB3	NPB4
Empirical formula	$C_{32}H_{26}BF_2N_5O_2$	C ₃₇ H ₃₆ BF ₂ N ₅ O ₂	$C_{39}H_{40}BF_2N_5O_2$
Crystal system	triclinic	monoclinic	triclinic
Space group	'P -1'	'P 21/n'	'P -1'
a (Å)	11.8174(2)	16.786(3)	10.4139(4)
b (Å)	14.496(2)	9.3658(2)	12.2447(4)
c (Å)	16.208(2)	20.888(4)	14.2584(6)
α (°)	92.150(3)	90	94.395(3)
β (°)	105.524(3)	97.685(6)	103.037(3)
γ (°)	103.757(3)	90	103.628(3)
V (Å ³)	2583.2(6)	3254.4(1)	1705.18(1)
Z	2	4	2
F(000)	1168	1328	696
ρ_{calc} (Mg m ⁻³)	1.443	1.289	1.285
T (K)	296(2)	300(2)	293(2)
μ (mm ⁻¹)	0.102	0.089	0.709
refln collected	5690	7029	6604
GOF on F ²	1.019	1.047	1.082
Final R1 on	0.0568	0.1254	0.0576
Final wR2 on	0.1280	0.3680	0.1723

Table S8. Selected crystallographic parameters for NPB1, NPB3 and NPB4

Bond length (Å)	NPI	31	NPB2 NPB3 NP		NPB3		B4
	Crystal	DFT	DFT	Crystal	DFT	Crystal	DFT
N1-B1	1.539(3)	1.568	1.568	1.53(2)	1.568	1.537(2)	1.568
N2-B1	1.533(3)	1.566	1.566	1.54(2)	1.566	1.532(3)	1.566
C5-C10	1.464(3)	1.476	1.476	1.51(3)	1.476	1.466(2)	1.476
N3-C13	1.396(3)	1.403	1.403	1.407(3)	1.403	1.397(2)	1.403
N4-C20	1.415(3)	1.415	1.414	1.40(2)	1.414	1.409(2)	1.414
N5-C30	1.391(3)	1.400	1.401	1.39(2)	1.402	1.398(3)	1.402
N5-C31	1.402(3)	1.406	1.405	1.42(2)	1.405	1.392(2)	1.405
N5-C32	1.447(3)	1.467	1.476	1.50(2)	1.475	1.472(2)	1.475
O1-C31	1.213(3)	1.224	1.225	1.21(2)	1.225	1.216(2)	1.225
O2–C30	1.217(3)	1.224	1.225	1.24(2)	1.225	1.218(2)	1.225

Table S9. Selected bond distances in NPB1– NPB4

Table S10. Selected bond angles in NPB1– NPB4

Bond Angle	NPI	81	NPB2	NPB3		NPB4	
(°)	Crystal	DFT	DFT	Crystal	DFT	Crystal	DFT
F1-B1-F2	108.82(2)	111.56	111.52	109.0(2)	111.53	109.82(2)	111.56
N2-B1-N1	106.26(2)	104.85	104.87	106.6(2)	104.89	106.26(2)	104.85
C4-C5-C10	120.59(2)	120.36	120.40	118(2)	120.36	121.03(2)	120.40
C10-C5-C6	119.96(2)	119.98	119.96	120.5(2)	119.98	119.76(2)	119.95
C11-C10-C5	122.0(2)	121.56	121.54	123.5(2)	121.49	122.38(1)	121.61
C15-C10-C5	121.14(2)	121.10	121.14	118.4(2)	121.16	120.82(1)	121.09
C13-N3-C16	116.44(2)	118.74	118.51	117.8(1)	118.45	117.85(1)	118.36
C13-N3-C19	117.02(2)	118.43	118.86	116.5(1)	118.73	115.90(1)	118.64
C20-N4-C17	115.89(2)	117.39	117.55	118.4(2)	117.50	117.38(1)	117.59
C20-N4-C18	116.17(2)	155.88	116.05	117.0(1)	115.88	114.99(1)	116.08
C31-N5-C32	117.3(2)	118.59	117.53	117.7(2)	117.42	118.47(1)	117.53
C32-N5-30	117.7(2)	116.25	117.46	118.3(2)	117.59	117.13(1)	117.49
C30-N5-C31	124.9(2)	126.16	24.98	123.9(2)	124.96	124.40(1)	124.96

	NPB1 (°)	NPB3 (°)	NPB4 (°)
Between BODIPY and Benzene ring	40.12 (A), 45.49 (B)	50.66	44.43
Between Benzene and	49.52 (A), 70.52(B)	14.36	82.95
BetweenBODIPY and	9.70 (A), 25.62 (B)	61.80	38.52

 Table S11. Selected dihedral angles from Crystal structure

 Table S12. Selected dihedral angles from DFT calculations

	NPB1 (°)	NPB2 (°)	NPB3 (°)	NPB4 (°)
Between BODIPY and Benzene ring	50.92	50.30	50.96	50.90
Between Benzene and	44.42	22.77	23.60	75.40
BetweenBODIPY and	13.42	71.93	73.43	24.66

 Table S13. Summary of the dominant electronic transitions observed in UV/Vis spectra of compounds (NPB1–NPB4) obtained from TD-DFT calculations

Compounds	E/ev	E/nm	Oscillator strength	Major contributions	
NPB1	2.6022	476.46 (497)	0.2224	HOMO → LUMO (97%)	
	2.7865	444.94	0.1947	HOMO-1 → LUMO (96%)	
	3.4723	357.07 (380)	0.1394	HOMO →LUMO+1 (94%)	
	3.5314	351.09	0.5021	HOMO-5 → LUMO (77%)	
NPB2	2.5965	477.50 (498)	0.1877	HOMO → LUMO (97%)	
	2.7723	447.23	0.2382	HOMO-1 → LUMO (93%)	
	3.4878	355.48(381)	0.1468	HOMO → LUMO+1 (92%)	
	3.5291	351.32	0.5047	HOMO-5 → LUMO (77%)	
NPB3	2.5989	477.06 (497)	0.1941	HOMO → LUMO (97%)	
	2.7697	447.65	0.2236	HOMO-1 → LUMO (93%)	
	3.4885	355.41(381)	0.1484	HOMO → LUMO+1 (93%)	
	3.5322	351.01	0.5061	HOMO-5 → LUMO (77%)	
NPB4	2.6004	476.78 (497)	0.1915	HOMO → LUMO (97%)	
	2.7723	447.23	0.2319	HOMO-1 → LUMO (93%)	
	3.4862	355.64 (380)	0.1514	HOMO → LUMO+1 (93%)	
	3.5307	351.16	0.5047	HOMO-5 → LUMO (77%)	

(E=energy, values in parentheses denote the experimental value, observed in UV/Vis spectra)

Fig. S52 Perspective view of some different C–H··· π interactions (a) and crystal packing through C–H··· π interactions (b) in **NPB1**.

Fig. S53 Perspective view of some different C–H··· π interactions (a) and crystal packing through C–H··· π interactions (b) in **NPB3**.

Fig. S54 Perspective view of some different C–H··· π interactions (a) and crystal packing through C–H··· π interactions (b) and (c) in **NPB4**.

Fig. S55 Perspective view of different C–O···H–C interactions in structure A (a) and structure B (b) and crystal packing through C–O···H–C interactions (c) in **NPB1**.

Fig. S56 Perspective view of some different C–O···H–C interaction (a) and crystal packing through C–O···H–C interaction (b) in **NPB3**.

Fig. S57 Perspective view of some different C–O···H–C interaction (a) and crystal packing involving C–O···H–C interaction (b) in **NPB4**.

Fig. S58 Perspective view of intermolecular C–H····H–C interactions in **NPB1** (a) and **NPB3** (b). (absent in **NPB4**)

Fig. S59 Comparison of Intermolecular B–F····H–C interactions in **NPB1** (a), **NPB3** (b) and **NPB4** (c).

Fig. S60 Intermolecular B–F···C interactions in NPB1 (absent in NPB2 and NPB3).

References:

- Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement; Gottingen University: Gottingen, Germany, 1997. (b) G. M. Sheldrick, SHELXS-97, Program for X-ray Crystal Structure Solution; Gottingen University: Gottingen, Germany, 1997.
- (a) A. L. Spek, PLATON, Multipurpose Crystallographic Tools Utrecht University, Utrecht, The Netherlands, 2000. (b) A. L. Spek, *Acta Crystallogr.* A, 1990, 46, C31.
- (a) W. R. Wadt and P. Hay, J. Chem. Phys., 1985, 82, 284–298; (b) A. D. J. Becke, Chem. Phys., 1993, 98, 5648–5652.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, revision A.1, Gaussian, Inc., Wallingford, CT, 2009.
- D. D. Perrin, W. L. F. Armango, D. R. Perrin, Purification of laboratory Chemicals, Pergamon: Oxford, U.K. 1986.
- 6. C. Zhang, Z. Liu, Y. Li, W. He, X. Gao and Z. Guo, Chem. Commun. 2013, 49, 11430–11432.
- C. Peebles, P. M. Alvey, V. Lynch and B. L. Iverson, *Crystal Growth & Design*, 2014, 14, 290–299.
- T. Gunnlaugsson, P. E. Kruger, P. Jensen, J. Tierney, H. D. P. Ali and G. M. Hussey, J. Org. Chem., 2005, 70, 10875–10878.

- X. Wang, Z. Chen, L. Tong, S. Tan, W. Zhou, T. Peng, K. Han, J. Ding, H. Xie and Y. Xu, *Eur. J. Med. Chem.*, 2013, 65, 477–486.
- 10. X. Feng, T. Zhang, J. -T. Liu, J. -Y. Miao and B. -X. Zhao, *Chem. Commun.*, 2016, **52**, 3131–3134.
- 11. Q. -C. Wang, D. Qu, J. Ren, L. Xu, M. Liu and H. Tian, *Dyes and Pigments*, 2003, **59**, 163–172.
- Y. Bao, H. D. Keersmaecker, S. Corneillie, F. Yu, H. Mizuno, G. Zhang, J. Hofkens, B. Mendrek, A. Kowalczuk and M. Smet, *Chem. Mater.*, 2015, 27, 3450–3455.