
Structuring polarity-inverted TBA to Gquadruplex for selective recognization of planarity of natural isoquinoline alkaloids

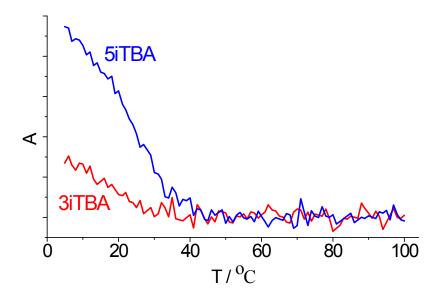
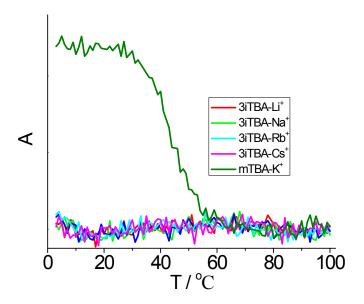
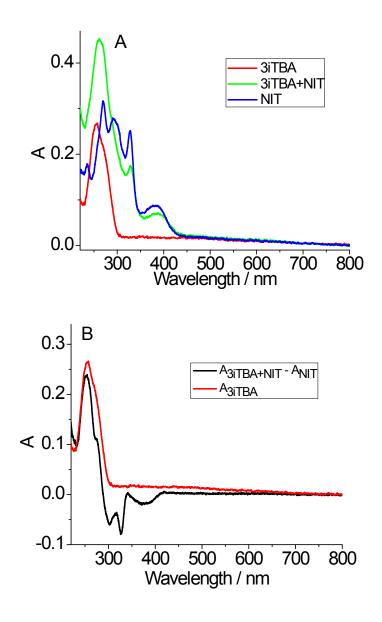
Yufeng Zhou,[†] Yali Yu,[†] Longlong Gao,[†] Yifan Fei,[†] Ting Ye,[†] Qiusha Li,[†] Xiaoshun Zhou,[†] Ning Gan,[§] and Yong Shao*,[†]

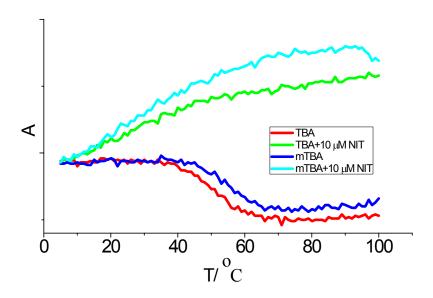
[†]Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China

[§]Faculty of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China

^{*}E-mail: yshao@zjnu.cn (S. Y.). Fax: 86 579 82282595

Scheme S1. Top-viewed (up) ans side-viewed (down) structures of IAs. For PAs, only BER is presented because of the structure similarity to show the saturated ring B induced non-planarity.


Figure S1. Melting curves of 3 μM 3iTBA and 5iTBA in 0.05 M Tris-HCl buffer (pH 7.0) containing 0.1 M $K^{+}.$

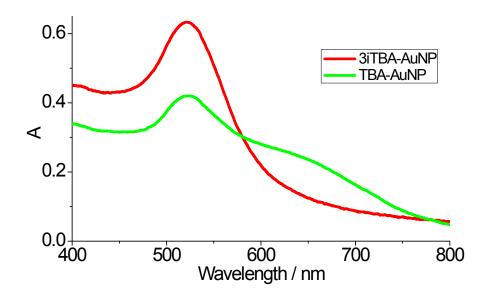

Figure S2. Melting curves of 3 μ M 3iTBA in 0.05 M Tris-HCl buffer (pH 7.0) containing 0.1 M Li⁺, Na⁺, Rb⁺, and Cs⁺, respectively. That of mTBA in K⁺ is also shown as a control.

Figure S3. (A) Absorption spectra of 3iTBA (2 μ M), NIT (10 μ M), and their mixture in 0.1 M PBS buffer (pH 7.0). (B) Absorption difference spectra of 3iTBA in the presence of NIT after subtracting that of NIT alone. Also shown is that of 3iTBA alone for a comparison to show the 3iTBA folding upon the NIT addition.

Figure S4. Melting curves of TBA and mTBA (3 μ M) in the absence and presence of NIT (10 μ M) in 0.1 M PBS buffer (pH 7.0, K⁺). The absorbance at the starting temperature of 3 °C was normalized for comparison.

Figure S5. Absorption spectra of AuNPs in PBS buffer (pH 7.0, 35 mM K^+) containing 3iTBA and TBA, respectively.