Supplementary Information

Confocal Raman micro-spectral evidence and physicochemical

evaluation of triamterene salts

Bo Peng,^a Zaiyong Zhang,^a Jian-Rong Wang,^a Meiqi Li,^{a,b} Qi Zhang^a and Xuefeng Mei^{*a}

- ^{a.} Pharmaceutical Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China.
- ^{b.} University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.

Fig. S1. TG and DSC curves of (a) Tri-NA, (b) Tri-BA, (c) Tri-TA, (d) Tri-INA and (e) $Tri-NA \cdot H_2O$ salts.

Fig. S2. The experimental PXRD of Tri-NA, Tri-NA·H₂O before and after heating.

Fig. S3. Polarized light microscopies of (a) Tri-NA·H₂O, (b) Tri-BA, (c) Tri-TA, (d) Tri-INA salts.

Fig. S4. ¹H-NMR (DMSO, 400 MHZ) of Tri-NA (a), Tri-BA (b). Tri-INA (c). The integration values suggested that the stoichiometry molar ratio of Tri : NA, Tri : BA, Tri : INA is 1:1, respectively.

Fig. S5. The experimental PXRD of four salts and corresponding acids.

Fig. S6. Comparison between experimental and simulated PXRD of salts: (a) $Tri-NA \cdot H_2O$, (b) Tri-TA.

Fig. S7. Comparison of DSC curves among (a) Tri, NA and Tri-NA, (b) Tri, BA and Tri-BA, (c) Tri, TA and Tri-TA, (d) Tri, INA and Tri-INA.

Fig. S8. Water vapour sorption and desorption isotherm curves of (a) Tri, (b) Tri-NA, (c) Tri-NA·H₂O, (d) Tri-BA, (e) Tri-TA, (f) Tri-INA salts.

Fig. S9. PXRD patterns of Tri salts after DVS experiments (a) Tri-NA, (b) Tri-BA, (c)

Tri-TA, (d) Tri-INA and (e) Tri-NA·H₂O.

Fig. S10. Apparent equilibrium solubility of Tri and its four salts in pH 2.0, 4.6 and 6.8 buffer solution.

Fig. S11. PXRD patterns of Tri salts after IDR tests (a) Tri-NA, (b) Tri-BA, (c) Tri-TA, (d) Tri-INA.

	Tri-NA·H ₂ O	Tri-TA
Formula	$C_{18}H_{18}N_8O_3$	$C_{19}H_{19}N_7O_3S$
Crystal system	triclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> -1
Temperature (<i>K</i>)	205	205
<i>a</i> (Å)	7.3398(4)	7.0799(10)
<i>b</i> (Å)	7.9181(5)	7.2853(10)
c (Å)	15.8561(9)	18.725(3)
α (°)	85.936(2)	94.786(7)
β(°)	85.998(2)	93.483(7)
γ(°)	79.919(2)	94.630(7)
V (Å ³)	903.46(9)	957.1(2)
D _{Cal} (g/cm ³)	1.450	1.476
Z	2	2
λ	1.54178 (Cu-Kα)	0.71073(Mo-Kα)
Independent refins.	2789	3525
S	0.941	0.928
R _{int}	0	0.0736
<i>R</i> ₁	0.0734	0.0599
wR ₂	0.2111	0.1383

Table S1. Crystallographic Data for two salts of Tri.

Table S2. Gradient HPLC system for the determination of Tri content.

_	Time (min)	KH ₂ PO ₄ %	MeOH %	Flow rate (mL/min)
_	0	70	30	1.0
	6	40	60	1.0

8	40	60	1.0
8.01	70	30	1.0
10	70	30	1.0

Table S3. List of intermo	plecular and intramole	cular hydrogen	bond lengths a	nd angles
	for two Tri s	salts.		

Crystal form	Interactions	HA (Å)	DA (Å)	<d-ha (°)<="" th=""><th>Symmetry code</th></d-ha>	Symmetry code
	N1-H1O1 (Inter)	1.91	2.769 (4)	171	х, у, z
	N2-H2AO2 (Inter)	2.00	2.804 (5)	163	х, y, z
	N2-H2BO3 (Inter)	2.02 (5)	2.909 (5)	167 (5)	-1+x,1+y,z
	O3-H3AO1 (Inter)	2.12	2.971 (4)	170	x,-1+y,z
	O3-H3BN8 (Inter)	1.95	2.755 (5)	156	x, y, z
	N4-H4AN3 (Inter)	2.12	2.988 (4)	175	-x,2-y,1-z
Iri-NA·H ₂ O	N4-H4BN5 (Intra)	2.47	2.790 (4)	102	x, y, z
	N4-H4BO3 (Inter)	2.22	2.888 (4)	134	1-x,1-y,1-z
	N7-H7AN6 (Inter)	2.19	3.043 (5)	168	2-x,1-y,1-z
	N7-H7BO1 (Inter)	2.17	2.830 (4)	132	2-x,1-y,1-z
	C6-H6N7 (Intra)	2.62	3.058 (6)	109	x, y, z
	C18-H18O1 (Intra)	2.50	2.817 (6)	100	x, y, z
	N1-H1O2 (Inter)	1.90	2.746 (4)	162	x, y, z
Tri-TA	N2-H2AO3 (Inter)	2.17	2.835 (4)	133	-1+x,y,z
	N2-H2BO2 (Inter)	2.42	3.136 (4)	139	x, y, z
	N4-H4AN3 (Inter)	2.20	3.061 (4)	170	-x,1-y,1-z
	N4-H4BN5	2.42	2.757 (4)	104	x, y, z

(Intra)				
N4-H4BO1	2.03	2.871 (4)	161	1-x,1-y,1-z
(Inter)				
N7-H7AN6	2.19	3.056 (4)	177	2-x,2-y,1-z
(Inter)				
N7-H7BO2	2.36	2.989 (4)	129	2-x,2-y,1-z
(Inter)				

For Tri-NA·H₂O, the N₁-H₁^{...}O₁, N₂-H_{2A}^{...}O₂, N₂-H_{2B}^{...}O₃, O₃-H_{3A}^{...}O₁, O₃-H_{3B}^{...}N₈, N₄-H_{4A}^{...}N₃, N₄-H_{4B}^{...}O₃, N₇-H_{7A}^{...}N₆, N₇-H_{7B}^{...}O₁ intermolecular H-bonding interaction are existed in Tri-NA·H₂O. In addition, the N₄-H_{4B}^{...}N₅, C₆-H₆^{...}N₇ and C₁₈-H₁₈^{...}O₁ intramolecular H-bonding interaction are also existed in Tri-NA·H₂O. For Tri-TA, the N₁-H₁^{...}O₂, N₂-H_{2A}^{...}O₃, N₂-H_{2B}^{...}O₂, N₄-H_{4A}^{...}N₃, N₄-H_{4B}^{...}O₁, N₇-H_{7A}^{...}N₆, N₇-H_{7B}^{...}O₂ intermolecular H-bonding interaction are existed in Tri-TA, and only the N₄-H_{4B}^{...}N₅ intramolecular H-bonding interaction is existed in Tri-TA, the remaining five H-bond donors are involved in intermolecular H-bonding interaction are involved in intermolecular H-bonding interactions in Tri-NA·H₂O, while for Tri-TA, four H-bond donors are involved in intermolecular H-bonding interactions in the trian the

The Alert level B of Tri-NA·H₂O single crystal structure occurring "The value of sine (theta_max)/wavelength is less than 0.575 Calculated sin (theta_max)/wavelength = 0.5750" error is mainly due to lacking of diffraction point in high angle region.