Support information

1. Cell imaging

The human breast cancer cells (MCF-7) were cultured in Roswell Park Memorial Institute (RPMI-1640) supplemented with 10% fetal bovine serum (FBS, Hyclone), 100 µg/mL penicillin and 100 µg/mL streptomycin at 37°C in a humidified atmosphere containing 5% CO₂. 24 h before imaging, cells were seeded in laser scanning confocal microscope (LSCM) culture dishes. The dishes were subsequently incubated at 37°C in a humidified atmosphere containing 5% CO₂. Then the cells were incubated with Cys (200 µM), Hcy (200 µM), GSH (200 µM), or NEM (1 mM) for 30 min. Subsequently, 10 µM Cz-BDP-NBD was added and incubated at 37°C for 1 h. The cells were washed three times with Dulbecco's PBS (pH 7.2) to remove free compound before analysis. MCF-7 cells only incubated with NEM (1 mM) for 30 min acted as a control. Confocal luminescence images of MCF-7 cells were carried out on an Olympus FV3000 laser scanning confocal microscope. Green (λ em = 510–560 nm) and red (λ em = 610–710 nm) channels upon excitations at 488 nm and 592 nm, respectively.

2. Cytotoxic assay

MCF-7 cells were seeded in a 96-well plate (1 × 104 cells/well). After cultivation for 24 h, Cz-BDP-NBD (dissolve in DMSO 10^{-3} M, then added it into the cell culture medium) of different concentrations(0 µM, 2 µM, 5 µM, 10 µM, 15 µM, 20 µM) were added into the wells (n = 6) and incubated for 24 h. Then stock solution of MTT (20 µL; 5 mg/mL) was added into each well. After 4 h incubation at 37°C, the MTT solution was replaced with 100 µL DMSO in each well. The absorbance in each well was measured at 570 nm with a multi-well plate reader. Cell viability was calculated using the following formula: Cell viability = (Mean absorbance of test wells – Mean

absorbance of medium control wells)/(Mean absorbance of untreated wells – Mean absorbance of medium control well) × 100%.

3. Detection limit ¹:

 $3\delta/k$

Where δ is the standard deviation of blank measurement, k is the slop between the fluorescence intensity versus Cys, Hcy, and GSH concentration.

4. Fluorescence quantum yields

Dilute solutions of the free probe and probe with Hcy, Cys and GSH (A(λex) ≈ 0.05) were used. Quantum yields sample were determined according to equation:

$$\Phi_s = \Phi_{ref} \frac{F_{ref} A_{ref} n_s^2}{F_s A_s n_{ref}^2}$$

Here, F denotes the integral areas of the corrected fluorescence spectrum, A is the absorbance at the excitation wavelength, n is the refractive index of solvent. "ref" and "s" denote parameters from the reference and unknown experimental samples, respectively. The reference systems at 670 nm used Rhodamine B ($\Phi_f = 0.65$ in EtOH ²) as reference and fluorescence at 540 nm used Fluorescein dissolved in 0.1 M sodium hydroxide solution as reference ³

Fig S1. UV-vis absorption and fluorescence titration spectra of Cz-BDP-NBD (10 μ M) with Cys, in THF/PBS (v/v = 1:1; pH = 7.4). (a) UV-vis Absorption spectra of probe in the presence of various concentrations of Cys; (b) Fluorescence spectra of Cz-BDP-NBD under different concentrations of Cys; (c) Fluorescence intensity of the probe at 540 nm. Insert photograph: fitted calibration curves of the fluorescence intensities; (d) Fluorescence intensity of the probe at 670 nm.

Insert photograph: fitted calibration curves of the fluorescence intensities.

Fig.S2 UV-vis absorption and fluorescence titration spectra of Cz-BDP-NBD (10 μ M) with GSH, in THF/PBS (v/v = 1:1; pH = 7.4). (a) UV-vis Absorption spectra of probe in the presence of various concentrations of Cys; (b) Fluorescence spectra of Cz-BDP-NBD under different concentrations of Cys; (c) Fluorescence intensity of the probe at 670 nm. Insert photograph: fitted calibration curves of the fluorescence intensities.

Fig.S3 (a); Responses time of probe Cz-BDP-NBD (10 μ M), in present of 200 μ M Hcy in a mixture of measured in THF/PBS (v/v = 1:1; pH = 7.4). (b); Responses time of probe Cz-BDP-NBD (10 μ M), in present of 200 μ M Cys. (c) Responses time of probe Cz-BDP-NBD (10 μ M), in present of 200 μ M GSH

Fig.S4 (a): Fluorescence intensity at 540 nm of probe (10 μ M, THF/PBS, v/v = 1:1; pH = 7.4) in the absence or presence of Hcy/Cys and GSH (200 μ M) at pH values from 3.0 to 12.0. (b): Fluorescence intensity at 670 nm of probe (10 μ M, THF/PBS, v/v = 1:1; pH = 7.4) in the absence or presence of Hcy/Cys and GSH (200 μ M) at different pH values. $\lambda ex = 470$ nm and 600 nm, slit 3 nm/3 nm.

Fig.S5 MTT experiment by the standard method. MCF-7 cells were incubated with different

concentrations of the probe for 24 hours, then the probe was removed and washed, and the cells were subjected to the MTT method.

	λ _{abs} nm	λ _{em} nm	ε(10 ⁵ cm ⁻¹ M ⁻ ¹)	Φ/%	LOD /nM	λ ₂ PET* (nm)	Ф б /GM
probe	350	509	0.76	-			
	627	644	0.96	0.2			
Probe+GSH	420	514	0.21	-			
	645	667	1.33	14.02	26.10	660	196.8
Probe+Hcy	470	530	0.47	27.98	36.90		
	645	667	1.29	14.24		659	180.4
Probe + Cys Cz-BDP	470	534	0.48	24.36	99.50		
	645	668	1.33	14.51		660	181.9
	645	667	1 35	15		661	198 5

Table.1 Properties of free probe and the probe (Cz-BDP-NBD) interacted with Hcy, Cys and GSH

*TPEF: two photon excited fluorescence was measured through Fluorescence reference method

and serviced the Rhodamine B ($2^* 10^{-5}$ M, 150 GM) as reference.

Reference

1. M. Gao, R. Wang, F. Yu, J. You and L. Chen, *Journal of Materials Chemistry B*, 2018, 6, 2608-2619.

2.D. Kand, T. Saha and P. Talukdar, Sensors and Actuators B: Chemical, 2014, 196, 440-449.

3.J. Lv, Y. Chen, F. Wang, T. Wei, Z. Zhang, J. Qiang and X. Chen, Dyes and Pigments, 2018, 148, 353-358.

Figure S6.¹H-NMR (CDCl₃) spectrum of compound NBD-Cl

Figure S7.13C-NMR (CDCl₃) spectrum of compound NBD-Cl

Figure S8.¹H-NMR (CDCl₃) spectrum of compound KZ-CHO

Figure S9.13C-NMR (CDCl₃) spectrum of compound KZ-CHO

Figure S10.¹H-NMR (CDCl₃) spectrum of compound M1

Figure S11. $^{\rm 13}\text{C-NMR}$ (CDCl_3) spectrum of compound M1

Figure S12. The MS spectrum of compound M1. Calculated for $C_{27}H_{26}BF_2N_3Na$ [M+Na]+: 464.2188, found [M+Na]+: 464.2187.

Figure S13.1H-NMR (d₆-DMSO) spectrum of compound M2

Figure S14. The MS spectrum of compound M2. Calculated for $C_{41}H_{34}BF_2N_3NaO_2$ [M+Na]⁺: 672.2712, Found [M+Na]⁺: 672.2732.

Figure S15.¹H-NMR (d₆-DMSO) spectrum of compound Cz-BDP-NBD

Figure S16.¹³C-NMR (d6-DMSO) spectrum of compound Cz-BDP-NBD