Supporting Information

C_3 -substituted cyclotriveratrylene derivative with 8-quinolinyl groups as a

fluorescence-enhanced probe for the sensing of Cu²⁺ ions

Takayo Moriuchi-Kawakami,*,ª Yohei Mizuno,ª Tsubasa Inoue,ª Shota Matsubara,ª and

Toshiyuki Moriuchi^b

^aDepartment of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi, Osaka 535-8585, Japan. Fax: +81-6-6957-2135; Tel: +81-6-6954-4281.

^bDivision of Molecular Materials Science, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan.

Corresponding Author

*E-mail: takayo.moriuchi@oit.ac.jp

Experimental

1. ¹H, ¹³C NMR, FTIR and HRMS data of the synthesized *C*₃-substituted CTV derivatives 1

The ¹H and ¹³C NMR spectra were recorded at 300 and 75 MHz, respectively. Samples for the NMR spectra were examined in CDCl₃ solutions at 25.0 °C on a Varian 300MHz NMR spectrometer (XL-300). The ¹³C NMR for C_3 -substituted CTV **1** was recorded at 100 MHz in CDCl₃ solutions at 25.0 °C on a JEOL 400MHz NMR spectrometer (JNM-ECZ400S/L1). The chemical shifts are given in δ (ppm) relative to the deuterated solvents (¹³C NMR) or to TMS (¹H NMR) as an internal standard. The IR spectra were run in KBr discs on a Shimazu FTIR-8600 spectrometer. High-resolution mass (HRMS) spectra (positive mode of EI mass) were recorded on a JEOL JMS-DX-303.

TRIS(8-QUINOLINYLMETHYL)CTG (1). white solid; mp 150-153 °C. ¹H NMR (CDCl₃): δ3.34 (d, 3Hb, H_{eq} of CH_2 , J = 13.8 Hz), 3.54 (s, 9Ha, OMe), 4.60 (d, 3Hc, H_{ax} of CH_2 , J = 13.8 Hz), 5.89 (d, 3Hd, OCH₂, J = 15.3 Hz), 5.97 (d, 3Hd, OCH₂, J = 15.3 Hz), 6.55 (s, 3He, C₆H₂), 6.89 (s, 3Hf, C_6H_2), 7.47 (dd, 3Hk, C_9H_6N , J = 8.4 and 4.2 Hz), 7.52 (dd, 3Hi, C_9H_6N , J = 8.4, and 6.9 Hz), 7.76 (dd, 3Hh, C₉H₆N, J = 8.4, and 1.2 Hz), 7.85 (dd, 3Hg, C₉H₆N, J = 6.9 and 1.2 Hz),

8.20 (dd, 3Hj, C₉H₆N, J = 8.4 and 1.8 Hz), 8.94 (dd, 3Hl, C_9H_6N , J = 4.2 and 1.8 Hz). ¹³C NMR (CDCl₃): δ 36.25 (CH₂), 55.83 (OMe), 67.07 (OCH₂), 113.01 (C₆H₂), 114.51 (C₆H₂), 121.16 (C₉H₆N), 126.71 (C₉H₆N), 127.98 (C₉H₆N), 127.06 (C₉H₆N), 127.96 (C₉H₆N), 131.50 (C₆H₂), 131.81 (C₆H₂), 135.30 (C₉H₆N), 136.32 (C₉H₆N), 145.38 (C₆H₂), 146.69 (C₆H₂), 147.79 (C₉H₆N), 149.35 (C₉H₆N). IR (KBr): 2929 (v_{C-H}), 1606 (v_{C=N-C}), 1265 (v_{C-O-} c) cm⁻¹. HRMS(FAB): m/z calcd. for $C_{54}H_{45}N_3O_6$ 831.3308, found [M+H] 832.3372.

h Ηc H" e a MeC о Ме g k j 1

TRIS(2-NAPHTHYLMETHYL)CTG (4). orange solid; mp 140-142 °C. ¹H NMR (CDCl₃): δ3.32 (s, 9Ha, OMe), 3.40 (d, 3Hb, H_{eq} of CH_2 , J = 13.8 Hz), 4.65 (d, 3Hc, H_{ax} of CH₂, J = 13.8 Hz), 5.23 (d, 3Hd, OCH₂, J = 13.2 Hz), 5.31 (d, 3Hd, OCH₂, J = 13.2 Hz), 6.51 (s, 3He, C₆H₂), 6.82 (s, 3Hf, C₆H₂), 7.45-7.52 (m, 9H, C₁₀H₇), 7.78-7.85 (m, 12H, C₁₀H₇). ¹³C NMR (CDCl₃): δ 36.70 (CH₂), 55.78 (OMe), 71.94 (OCH₂), 113.52 (C_6H_2) , 116.05 (C_6H_2) , 124.83 $(C_{10}H_7)$, 125.54 $(C_{10}H_7)$, 126.26 (C₁₀H₇), 126.53 (C₁₀H₇), 127.96 (C₁₀H₇), 128.16 (C₁₀H₇), 128.63 $(C_{10}H_7)$, 131.69 (C_6H_2) , 132.71 (C_6H_2) , 133.24 $(C_{10}H_7)$, 133.57 (C₁₀H₇), 135.39 (C₁₀H₇), 147.25 (C₆H₂), 148.52 (C₆H₂). IR (KBr): 2920 (v_{C-H}), 1265 (v_{C-O-C}) cm⁻¹. HRMS(FAB): m/z calcd. for C₅₇H₄₈O₆ 828.3451, found 828.3451.

8-(2-METHOXY-4-METHYLPHENOXYMETHYL)QUINOLINE (5). white solid; mp 100-101 °C. ¹H NMR (CDCl₃): δ2.29 (s, 3Hb, CH₃), 3.93 (s, 3Ha, OMe), 5.93 (s, 2Hd, OCH₂), 6.61 (dd, 1Hc, C_6H_3 , J = 8.1 and 1.5 Hz), 6.76 (d, 1He, C_6H_3 , J = 1.5 Hz), 6.86 (d, 1Hf, C_6H_3 , J = 8.1 Hz), 7.44 $(dd, 1Hk, C_9H_6N, J = 8.4 and 4.2 Hz), 7.54 (dd, 1Hh, C_9H_6N, J = 8.4 and 7.2$ Hz), 7.75 (d, 1Hi, C₉H₆N, J = 8.4 Hz), 7.94 (d, 1Hg, C₉H₆N, J = 7.2 Hz), 8.18 $(dd, 1Hi, C_9H_6N, J = 8.4 and 1.5 Hz), 8.94 (dd, 1Hl, C_9H_6N, J = 4.2 and 1.5 Hz)$ Hz). ¹³C NMR (CDCl₃): δ21.25 (CH₃), 56.24 (OMe), 67.39 (OCH₂), 113.15 (C₆H₃), 113.94 (C₆H₃), 121.11 (C₉H₆N), 121.32 (C₉H₆N), 126.77 (C₉H₆N), 127.19 (C₉H₆N), 127.26 (C₉H₆N), 128.21 (C₆H₃), 130.90 (C₆H₃). 135.77 (C₉H₆N), 136.51 (C₉H₆N), 145.79 (C₆H₃), 146.33 (C₆H₃), 149.47 (C₉H₆N), 149.65 (C₉H₆N). IR (KBr): 2920 (ν_{C-H}), 1516 ($\nu_{C=N-C}$), 1267 (ν_{C-O-C}) cm⁻¹. k i HRMS(FAB): m/z calcd. for C₁₈H₁₇O₂ 279.3417, found 279.1261.

Hc е а MeO о́Ме d оMe 4

2. Time-dependent fluorescence intensity changes of C₃-substituted CTV derivative 1

The fluorescence emission spectra were recorded on a Shimazu RF-5300PC(S) luminescence spectrometer. The emission spectra from 340 to 770 nm were collected (every 1 nm).

The time-dependent experiment of the fluorescence intensity at 319 nm of C_3 -substituted CTV **1** was performed in the presence of 1 equiv of Cu²⁺. As shown in Fig. S1, the fluorescence intensity plateaued within ca. 30 min after the addition of Cu²⁺ ions.

Fig. S1 Time-dependent fluorescence intensity changes of C_3 -CTV derivatives **1** (10 μ M) in the presence of 1 equiv of Cu²⁺ ion at 431 nm in CH₃CN (excitation wavelength: λ_{ex} =313 nm).

3. Comparison of quinoline-based fluorescence-enhanced probe for the Cu²⁺ ion

probe	solvent $\lambda_{em} / \lambda_{em}$	binding mode (reversibility)	mechanism	ref no.
N HO OH QH	DMSO:H ₂ O=1:1 352 nm / 623 nm	1:1	Cu ²⁺ -chelating PET quenching	34
small fluorescence H^0 H^0 FQ-2 small fluorescence	H2O 380 nm / 490 nm	1 : 1 (reversible with EDTA)	Cu ²⁺ -chelating PET quenching	35
$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\$	CH ₃ CN:H ₂ O=7:3 520 nm / ca. 585 nm	1:1	Cu ²⁺ -promoted ring-opening of rhodamine spirolactam	34
OFF-ON PQ very weak fluorescence	H ₂ O 390 nm / 502 nm		Cu ²⁺ -promoted hydrolysis of picolinic moiety	36
OFF-ON Very weak fluorescence	CH ₃ CN 315 nm / 412 nm	1:1	Cu ²⁺ -chelating PET quenching	36
OFF-ON	CH3CN 335 nm / 412 nm	1:1	Cu ²⁺ -chelating PET quenching	36

Table S1. Comparison of quinoline-based fluorescence-enhanced probes for the Cu^{2+} ion.