Supporting Information

A Conjugated Carbon-Dots-Tyrosinase Bioprobe for Highly Selective and Sensitive Detection of Dopamine

Zhongdi Tang,^{a,b} Kai Jiang,^a Shan Sun,^a Sihua Qian,^a Yuhui Wang,^{a,*} Hengwei Lin^{a,*}

^a Key Laboratory of Graphene Technologies and Applications of Zhejiang Province, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China

^b Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, P. R. China

* E-mail: wangyuhui@nimte.ac.cn (Y. W.); linhengwei@nimte.ac.cn (H. L.)

Supplementary Figures and Tables

Fig. S1. Photostability of the CDs (normalized emission intensity at 465 nm) under continuous irradiation with a xenon lamp (150 W).

Fig. S2. The optimal fluorescence excitation ($\lambda_{em} = 465$, black line) and emission spectra ($\lambda_{ex} = 350$ nm, red line) of the bioprobe (i.e. CDs-TYR).

Fig. S3. Photostability of the bioprobe (normalized emission intensity at 465 nm) under continuous UV-light irradiation.

Fig. S4. Normalized fluorescence intensity ($\lambda_{ex} = 350 \text{ nm}$) of the bioprobe (i.e. CDs-TYR) measured at 465 nm under different pH values.

Fig. S5. Normalized fluorescence intensity ($\lambda_{ex} = 350$ nm) of the bioprobe measured at 465 nm under different various ionic strengths (NaCl).

Fig. S6. Storage stability of the bioprobe (15 μ g/mL) in the absence and presence of dopamine (10 μ M).

Fig. S7. Time course of the fluorescence quenching of the bioprobe (15 μ g/mL) in the presence of dopamine (10 μ M).

Fig. S8. The quenching efficiency of the bioprobe (15 μ g/mL) upon the addition of dopamine (10 μ M) under different temperatures.

Fig. S9. Fluorescence emission spectra of CDs (10 μ g) in the absence (black line) and presence (red line) of TYR (5 μ g).

Fig. S10. Fluorescence decay profiles of the bioprobe (i.e. CDs-TYR, 15 μ g/mL) at λ_{em} = 465 nm without (a), and with (b) the addition of dopamine (10 μ M) under the excitation at 350 nm.

No	Added	Found	Recovery	RSD
	(µM)	(µM)	(%)	(n=3)
1	2.0	1.89	94.5	6.5%
2	3.0	3.10	103.3	7.0%
3	4.0	3.65	91.3	1.5%
4	5.0	5.20	104.0	2.4%

Table S1. Results of dopamine detection in human serum samples.