
Supplemental Information

Logical MS/MS Scans: A New Set of Operations for Tandem Mass Spectrometry
Dalton T. Snyder; Lucas J. Szalwinski; J. Mitchell Wells; R. Graham Cooks*

*Corresponding author: cooks@purdue.edu

Table of Contents
Figure S1 ...2

Program S1 ...3

Program S2 ...4

Program S3 ...5

Program S4 ...7

Electronic Supplementary Material (ESI) for Analyst.
This journal is © The Royal Society of Chemistry 2018

mailto:cooks@purdue.edu

Figure S1: Illustrative waveforms used in this study: (a) frequency vs. time profile for an inverse
Mathieu q scan over 600 ms from q = 0.908 to q = 0.15, (b) a broadband sum of sines waveform
with 1 kHz frequency spacing from 300 kHz (q = 0.654) to 50 kHz (q = 0.12) and a quadratic
phase relationship with respect to frequency, (c) frequency vs. time relationship for a
broadband waveform with frequency lower bound 10 kHz higher than the inverse Mathieu q
scan in (a), (d) the same frequency profile as (c) but with a 10 kHz wide notch, (e) a waveform
with the profile in (c), and (f) a waveform with the profile in (d) where the notch at 157 kHz is
10 kHz wide (used for a NOT precursor scan). Voltage is shown in arbitrary units because they
end up scaled by the waveform generator.

% Program: Inverse_Mathieu_q_Scan.m
% Calculates an Inverse Mathieu q Scan, i.e. an ac frequency sweep with
% approximately linear mass scale

% Define variables
scan_time = 0.6; % mass scan time in seconds
begin_q = 0.908; % starting Mathieu q value
end_q = 0.15; % ending Mathieu q value
sampling_rate = 5000000; % sampling rate of waveform - must match

% function generator (Sa/s)
rf_frequency = 1166000; % trap rf frequency in Hz
num_points = ceil(sampling_rate * scan_time); % number of points in the

% waveform
time = linspace(0, num_points-1, num_points)*scan_time/num_points;

% time variable
begin_amplitude = 1; % p-p voltage to start at if doing an

% amplitude ramp
end_amplitude = 1; % p-p voltage to end at if doing an amplitude

% ramp
phi(1) = 0; % initial phase of waveform, best to set at 0

% so scan starts at 0 voltage

% Calculate Mathieu q values as a function of time
% Assume sweep according to q = k / (t-j)
% where q is Mathieu q value to interrogate,
% t is time, and k and j are constants to be calculated
j = end_q*scan_time / (end_q - begin_q);
k = -begin_q*j;
q_values = k ./ (time - j);

% Assume linear ramp of ac amplitude
% If begin and end amplitude are the same, then amplitude is constant
amplitudes = linspace(begin_amplitude,end_amplitude,num_points);

% Preallocate memory for frequency, beta, and waveform voltage as a function
% of time
frequencies = zeros(num_points,1);
betas = zeros(num_points,1);
waveform = zeros(num_points,1);

% Use a phase accumulator (phi) to do a nonlinear frequency sweep, convert
% Mathieu q to beta, then to frequency, and finally to phase accumulator
for i = 1:num_points
 betas(i) = beta_calculator(q_values(i));
 frequencies(i) = betas(i)*rf_frequency/2;
 waveform(i) = amplitudes(i)*sin(phi(i));
 delta = 2*pi*frequencies(i)/sampling_rate;
 phi(i+1) = phi(i) + delta;
end

Program S1: Program for calculating an inverse Mathieu q scan with (in this case) 600 ms mass
scan time and start and end Mathieu q values of 0.908 and 0.15, respectively.

function [beta] = beta_calculator(q)

% Function: beta_calculator
% Accepts an ion's Mathieu q value and calculates the ion's beta value

% Initial guess
beta = 0.5;
prev_beta = 0;

% Bounds
left_bound = 0;
right_bound = 1;

% Tolerance defines accuracy of result
tolerance = 0.00001;
LHS_minus_RHS = 1; % LHS = left hand side of the equation for calculating

 % beta; RHS = right hand side

% Iterate the calculation until the difference between the LHS and RHS of the
equation for calculating beta is below a specified tolerance
while (abs(beta - prev_beta) > tolerance)
 % Left hand side of beta equation
 LHS = beta^2;
 q_sq = q^2;

 % Right hand side of beta equation
 RHS = q_sq/((beta+2)^2 - q_sq/((beta+4)^2 - q_sq/((beta+6)^2 -
q_sq/((beta+8)^2-q_sq/(beta+10)^2)))) + q_sq/((beta-2)^2 - q_sq/((beta-4)^2 -
q_sq/((beta-6)^2-q_sq/((beta-8)^2-q_sq/(beta-10)^2))));

 LHS_minus_RHS = LHS - RHS;

 % Guess not close enough
 if LHS_minus_RHS < 0
 prev_beta = beta;
 beta = (beta + right_bound) / 2;
 left_bound = prev_beta;
 elseif LHS_minus_RHS > 0
 prev_beta = beta;
 beta = (beta + left_bound) / 2;
 right_bound = prev_beta;
 else
 % do nothing, guess was close enough
 end
end
end

Program S2: Program for converting from Mathieu q to parameter beta (which is directly
proportional to secular frequency).

% Program: sum_sine_excitation
% Creates a broadband waveform with no notches for excitation
% or ejection of ions over a wide mass range

sampling_rate = 5000000; % waveform generator sampling rate

% (Sa/s)
rf_freq = 1166000; % trapping rf frequency in Hz
start_freq = 300000; % where the notch starts (Hz)
end_freq = 50000; % where the notch ends (Hz)
freq_resolution = 1000; % difference between adjacent

% frequencies (Hz)
waveform_length_s = 0.1; % length of waveform in s
phase_fudge_factor = 0.001; % determines how phases are distributed
num_points = round(waveform_length_s*sampling_rate); % number of points in

 % the waveform

% Initialize arrays for the waveform, frequency vs. time, and phase as a
% function of frequency
master_waveform = zeros(num_points,1);
frequencies = linspace(start_freq,end_freq,num_frequencies);
num_frequencies = length(frequencies);
phases = zeros(num_frequencies,1);

% Distribute phases so that master waveform has flat amplitude profile
% Assumes phases are quadratically related to frequency
for i=1:num_frequencies
 phases(i) = (frequencies(i)-
frequencies(1))^2*waveform_length_s/(2*(frequencies(num_frequencies)-
frequencies(1))*phase_fudge_factor);
end

% Make time array
time = linspace(0,waveform_length_s,waveform_length_s*sampling_rate).';

% Build master waveform
for i=1:num_frequencies
 master_waveform = master_waveform +

sin(2*pi*frequencies(i).*time+phases(i));
end

% normalize amplitude to 1
master_waveform = (1/max(master_waveform))*master_waveform;

Program S3: Program for creating a broadband sum of sines waveform for ion excitation.
Phases are distributed quadratically vs. frequency to ensure a flat amplitude profile.

% Program: Not_Scan (precursor scan version)
% Calculates a notched broadband waveform that varies with time so that the
% lowest frequency at any given time point is above the corresponding
% frequency for the specified inverse Mathieu q scan. This prevents
% precursor ions from being ejected by the broadband waveform before they are
% fragmented by the inverse Mathieu q scan. The notch is fixed and placed so
% as to prevent the ejection of a selected product ion, thereby ejecting all
% product ions except the selected ion.

% Define variables
scan_time = .6; % scan time in seconds
begin_q = 0.908; % Mathieu q value to start at
end_q = 0.15; % Mathieu q value to end at
sampling_rate = 5000000; % sampling rate of waveform (Sa/s)
rf_frequency = 1166000; % trap rf frequency in Hz
num_points = ceil(sampling_rate * scan_time); % number of points in waveform
time = linspace(0, num_points-1, num_points)*scan_time/num_points;

 % time variable
frequency_resolution = 1000; % spacing between adjacent frequencies
(Hz)
distance_from_lower_bound = 10000; % frequency distance between the
inverse

% Mathieu q scan and the lowest frequency
% in the broadband waveform

phase_fudge_factor = 0.0001; % used for phase overmodulation
notch_frequency = 157000; % center frequency of notch in Hz
notch_width = 10000; % frequency width of notch in
Hz

% Calculate Mathieu q values as a function of time for an inverse Mathieu q
% scan
% Assume sweep according to q = k / (t-j)
j = end_q*scan_time / (end_q - begin_q); k = -begin_q*j;
q_values = k ./ (time - j);

% Convert from Mathieu q to frequency; ‘lower_bound_frequencies’ contains the
% lower bound frequency of the broadband waveform as a function of time, i.e.
% the frequency that the inverse Mathieu q scan is applying as a function of
% time
lower_bound_frequencies = zeros(num_points,1);
betas = zeros(num_points,1);
for i = 1:num_points
 betas(i) = beta_calculator(q_values(i));
 lower_bound_frequencies(i) = betas(i)*rf_frequency/2;
end

% Build frequencies array
num_frequencies = floor(abs(rf_frequency/2-
lower_bound_frequencies(end))/frequency_resolution); % total number of

 % frequencies in waveform

frequencies =
linspace(rf_frequency/2,lower_bound_frequencies(end),num_frequencies);

%

% Distribute phases so that master waveform has flat amplitude profile
phases = zeros(num_frequencies,1);
for i=1:num_frequencies
 phases(i) = (frequencies(i)-
frequencies(1))^2*scan_time/(2*(frequencies(num_frequencies)-
frequencies(1))*phase_fudge_factor);
end

% Build final waveform point by point
waveform = zeros(num_points,1);
for i=1:num_points
 for n=1:length(frequencies)

 % This frequency is above the lower bound and is not in the notch, so
 % include it!

 if ((frequencies(n) > lower_bound_frequencies(i) +
distance_from_lower_bound) && ~((frequencies(n) < notch_frequency
+ notch_width/2) && (frequencies(n) > notch_frequency –
notch_width/2)))

 waveform(i) =
waveform(i) + sin(2*pi*frequencies(n)*time(i) + phases(n));

 end
 end
end

Program S4: Program for calculating a notched broadband waveform for a NOT scan (precursor
scan variant). The broadband waveform varies as a function of time so that the included
frequencies are always above the corresponding inverse mathieu q scan frequency at each time
point. A fixed notch is also implemented so as to prevent the ejection of a selected product ion.
Thus, this scan (in conjunction with an inverse Mathieu q scan for precursor ion excitation)
detects all precursor ions that do not exclusively produce the selected product ion. To create a
NOR scan broadband waveform, two notches are implemented instead of one. For neutral loss
variants, no notches are used and instead the neutral loss products are neutralized on the y
rods by an inverse Mathieu q scan.

