Ultrasensitive and simple fluorescence biosensor for mecA gene of

Staphylococcus aureus detection by using exonuclease III-assisted

cascade signal amplification strategy

Qiong Li^a,^b Danhua Zhou^b,^c Jiafeng Pan,^b Zhi Liu^{*a} and Junhua Chen^{*b}

- a. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
- b. Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental and Science & Technology, Guangzhou 510650, China.
- c. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.

Corresponding auther: E-mail: 222chenjunhua@163.com; jhchen@soil.gd.cn.

Fig. S1 Effect of the reaction temperature on the response of the sensing system. The histograms represent fluorescence intensity of the solution in the presence of 10 nM *mecA* gene (green) and in the absence of target (blue), respectively. The red line represents the S/N ratio. The corresponding error bars represent the standard deviation of three independent measurements obtained at each reaction temperature.

Fig. S2 Effect of the reaction time of signal amplification on the fluorescence intensity of the proposed method for the *mecA* gene (10 nM) detection. Reactions were performed at room temperature.

Figure. S3 Effect of the Exo III concentration on the performance of the sensing system. The *mecA* gene concentration is 10 nM. Incubation temperature and reaction time were 25 °C and 30 min, respectively.

Table. S1 Comparison of analytical methods capable of sensing mecA gene

Method	Linear range	Detection Limit	References
Thin-film biosensor base	—	10 fM	1
on TMS and HRP			
FRET biosensor base on	—	1 nM	2
GQPS and AuNPs			
Isothermal strand	75 fM-200 pM	63 fM	3
displacement			
polymerization reaction			
Electrochemical	50-250 pM	23 pM	4
biosensor using AuNPs			
Electrochemical	10 fM-100 nM	10 fM	5
biosensor based on MSP			
and TSP			
Fluorescence biosensor	12.5 pM-3.125 nM	6.25 pM	6
base on grapheme oxide			
Thin-film biosensor base	—	1 fM	7
on TMS and HRP			
Fluorescence biosensor	10 fM-100 nM	2.4 fM	This work
base on Exo III-based			
signal amplification			

Reference

[1] W. C. Lindsey, E. S. Woodruff and D. Weed, *Diagnostic Microbiology and Infectious Disease*, 2008, **61**, 273-279.

[2] J. Shi, C. Chan, Y. Pang and W. Ye, *Biosensors and Bioelectronics*, 2015, **67**, 595-600.

[3] T. Wang, Z. Zhang, Y. Li and G. Xie, Sensors and Actuators B: Chemical, 2015, 221, 148-154.

[4] M. Liu, H. Xiang, E. Hua, L. Wang, and X. Jing, *Analytical Letters*, 2014, **47**, 579-591.

[5] L. Xu, W. Liang, Y. Wen and L. Wang, *Biosensors and Bioelectronics*, 2018, **99**, 424-430.

[6] S. Pang, Y. Gao, Y. Li and S. Liu, Analyst, 2013, 138, 2749-2754.

[6] J. Klonoski, R. Mondesire, L. Rea, D.C. Ward and R.D. Jenison, Analytical Biochemistry, 2010, **396**, 284-289.