Electronic Supplementary Information to

Quantitative profile-profile relationship (QPPR) modelling: a novel machine learning approach to predict and associate chemical characteristics of unspent ammunition from gunshot residue (GSR)

Matteo D. Gallidabino*, Leon P. Barron, Céline Weyermann, Francesco S. Romolo

*Email: matteo.gallidabino@northumbria.ac.uk

Table of contents

- S-2: Distributions of input and output variables
- S-4: Tested regression methods
- S-5: Correlations between absolute errors
- S-9: Summary table of RMSEs
- S-10: Compound characteristics vs. class RMSEs
- S-11: Summary tables of PCCs
- S-12: Numbers of pairwise comparisons and observed AUCs

Distributions of input and output variables

Table S1 – Comparison of the distribution (n = 36) characteristics for the eight output variables before and after base-10 logarithm transformation of peak areas (PA). The last column shows the differences between %RSD and skewness values (PA – logPA).

Comp		Р	A			Log	Difference			
Comp.	Mean	SD	%RSD	Skew.	Mean	SD	%RSD	Skew.	%RSD	Skew.
O _{4ND}	1.08x10 ²	1.10x10 ²	101.9	1.10	1.44	1.02	71.1	-0.60	-30.8	-0.50
O _{AK2}	5.18x10 ³	9.88x10 ³	190.9	1.51	1.25	1.86	148.9	0.94	-42.0	-0.57
O _{DOF}	2.22x10 ²	6.39x10 ²	288.0	2.62	0.37	1.05	286.9	2.58	-1.1	-0.04
O _{DBP}	1.04x10⁵	2.42x10⁵	231.7	2.54	3.68	1.43	38.9	-0.23	-192.9	-2.31
O _{EC}	1.03x10⁵	1.24x10⁵	120.1	0.95	3.69	1.85	50.2	-0.73	-69.9	-0.23
O _{DPA}	6.21x10 ⁴	3.60x10 ⁴	58.0	-0.83	4.17	1.52	36.4	-2.02	-21.6	1.19
O _{NG}	8.69x10⁵	6.16x10⁵	70.9	0.81	5.30	1.83	34.5	-2.54	-36.4	1.73
O _{2ND}	2.38x10 ²	2.08x10 ²	87.3	0.38	1.84	1.05	57.2	-1.06	-30.1	0.68

SD: standard deviation; %RSD: relative standard deviation in %; Skew.: skewness.

Figure S1 – Boxplots (n = 36) for the eight output variables before (a) and after (b) base-10 logarithm transformation of peak areas. Data were centred and scaled to allow a better comparison of their distribution.

Table S2 – Comparison of the distribution (n = 27) characteristics for the eight input variables before and after base-10 logarithm transformation of peak areas (PA). The last column shows the differences between %RSD and skewness values (PA – logPA).

Comp		Р	Α			Log	Difference			
Comp.	Mean	SD	%RSD	Skew.	Mean	SD	%RSD	Skew.	%RSD	Skew.
I _{DND}	9.15x10 ³	2.34x10 ⁴	256.4	4.34	1.79	2.07	115.2	0.31	-141.1	-4.03
I _{4ND}	2.49x10 ⁶	5.63x10 ⁶	226.2	2.93	5.06	1.79	35.4	-1.63	-190.9	-1.30
I _{Ak2}	1.80x10⁵	3.35x10⁵	186.0	1.79	4.42	0.84	19.0	1.06	-167.1	-0.73
I _{2ND}	8.22x10 ⁶	1.31x10 ⁷	159.0	2.26	6.28	0.95	15.2	-0.60	-143.8	-1.67
I _{DBP}	6.03x10 ⁷	7.10x10 ⁷	117.8	1.66	7.39	0.66	9.0	-0.03	-108.8	-1.63
I _{EC}	2.12x10 ⁷	2.66x10 ⁷	125.4	1.69	6.92	0.68	9.9	-0.13	-115.5	-1.56
I _{DPA}	1.55x10 ⁷	1.97x10 ⁷	127.8	0.94	6.56	0.90	13.8	-0.23	-114.0	-0.71
I _{HEX}	4.70x10 ⁶	6.29x10 ⁶	133.8	2.24	6.39	0.51	7.9	0.18	-125.8	-2.06

SD: standard deviation; %RSD: relative standard deviation in %; Skew.: skewness.

Figure S2 – Boxplots (n = 27) for the eight input variables before (a) and after (b) base-10 logarithm transformation of peak areas. Data were centred and scaled to allow a better comparison of their distribution.

Tested machine learning methods

Table S3 – Tested regression techniques with corresponding method values in the *caret* package, libraries, and tuning parameters.

Regression method	Abbr.	CARET method value	Library	Tuning parameters
Ordinary least-squares	OLS	lm	stats	-
Partial least-squares	PLS	pls	pls	псотр
Ridge regression	RR	ridge	elasticnet	lambda
Elastic net	EN	enet	elasticnet	lambda, fraction
Multivariate adaptive regression spline (bagged)	MARS	bagEarth	earth	nprune, degree
k-nearest neighbors	KNN	knn	knn	k
Extreme learning machine	ELM	elm	elmNN	actfun, nhid
Single-layer perceptron neural network (averaged)	ANN	nnet	nnet	size, decay
Support vector machines (radial basis kernel)	SVM-RAD	svmRadial	kernlab	С
Support vector machines (polynomial kernel)	SVM-POL	svmPoly	kernlab	C, degree, scale
Random forest (CART learner)	RF-CART	rf	randomForest	mtry
Random forest (CIT learner)	RF-CIT	cforest	party	mtry
Boosted trees	ВТ	gbm	gbm	interaction.depth, n.trees, shrinkage, n.minobsinnode
Cubist	CR	cubist	cubist	committees, neighbors

Correlations between absolute errors

(a) O_{DPA}

(b) O_{2ND}

(c) O_{4ND}

(d) O_{AK2}

(f) O_{DBP}

(g) O_{NG}

(h) O_{DOF}

Figure S3 – Plot of Pearson's correlation coefficients (PPCs) between the absolute errors obtained after predictions of the eight outputs with the fourteen tested regression methods (extrapolation mode). For O_{AK2} and O_{DOF} , MARS has been omitted as the algorithm did not converge to solution for some resampled data subsets during model training.

Summary table of RMSEs

Regression technique	O _{4ND}	О _{АК2}	O _{DOF}	O _{DBP}	O _{EC}	O _{DPA}	O _{NG}	O _{2ND}	Median
OLS	1.553	1.245	0.943	1.642	2.015	1.752	3.925	1.299	1.597
PLS	1.235	1.363	1.226	1.754	2.146	1.460	3.606	1.153	1.411
RR	1.334	1.333	1.086	1.604	2.033	1.418	3.161	1.150	1.376
EN	1.232	1.275	0.972	1.547	2.002	1.337	2.600	1.042	1.306
MARS	0.951	NAª	NAª	1.755	2.252	1.501	2.613	1.014	1.628
KNN	0.881	1.754	1.347	1.541	1.678	1.069	2.803	0.834	1.444
ELM	1.129	1.246	0.538	1.762	1.948	1.353	2.756	1.046	1.299
ANN	0.880	1.380	1.234	1.053	1.904	1.635	3.595	0.873	1.307
SVM-RAD	0.777	1.474	0.882	1.424	1.701	1.125	2.427	0.730	1.274
SVM-POL	1.168	1.343	1.111	1.654	1.934	1.174	2.717	1.064	1.259
RF-CART	0.924	1.781	0.510	1.435	1.385	1.081	2.592	0.633	1.233
RF-CIT	1.100	2.066	0.412	1.582	2.055	1.487	1.969	1.169	1.534
BT	1.039	1.793	0.817	1.830	1.736	1.311	2.693	0.961	1.523
CR	1.030	1.939	1.167	1.556	1.355	1.011	2.761	0.542	1.261

Table S4 – Root-mean-square errors (RMSEs) observed after prediction of the logPAs of the eight output compounds using the fourteen tested regression methods (extrapolation mode).

^a algorithm failed to converge to solution for some ammunition types.

Compound characteristics vs. class RMSEs

Table S5 – Comparison between the characteristics of the eight output compounds and the mean root-meansquare errors (RMSEs) for the two classes of regression technique. Grey-coloured correlation values are specifically discussed in the manuscript.

	Com	pound character	istics		Mean RMSEs	
Output	Mean IogPA	Range logPAs	Linearity (R²)ª	Linear models	Non-linear models	Difference (δ _{RMSE})
O _{4ND}	1.478	2.463	0.668	1.338	0.988	-0.350
O _{AK2}	1.252	4.427	0.902	1.304	1.642	0.338
O _{DOF}	0.367	3.300	0.656	1.057	0.891	-0.166
O _{DBP}	3.685	4.471	0.717	1.637	1.559	-0.078
O _{EC}	3.692	5.502	0.877	2.049	1.795	-0.254
O _{DPA}	4.232	4.093	0.732	1.492	1.275	-0.217
O _{NG}	5.314	5.927	0.314	3.323	2.693	-0.631
O _{2ND}	1.841	2.785	0.762	1.161	0.886	-0.275
		Correlations	Mean logPA	0.809	0.748	-0.513
			Range logPAs	0.809	0.917	-0.138
			Linearity	-0.693	-0.493	0.768

^a degree of linearity between the considered output compound and the full set of input compounds, measured with the coefficients of determination of the reciprocal OLS model.

Figure S4 – Visual representation of the observed mean RMSE enhancement after moving from linear to nonlinear methods (δ_{RMSE}), as a function of the eight output compounds. The latter are ranked according to their decreasing degree of linearity with the full set of predictors (most linear on top).

Summary tables of PCCs

Table S6 – Observed PCCs after within-ammunition comparisons of profiles predicted using the two tested combinations of models (CoM_1 and CoM_2) and both training schemes (extrapolation and interpolation).

		Extrapolation				Interpolation				
	М-М	Pred Meas	icted- sured	Pred Pred	icted- licted	Pred Meas	icted- sured	Pred Pred	icted- licted	
		CoM₁	CoM₂	CoM₁	CoM₂	CoM₁	CoM₂	CoM₁	CoM₂	
General statistics										
Min	0.939	0.367	0.370	0.905	0.914	0.417	0.254	0.855	0.781	
1st Q.	0.999	0.711	0.874	0.946	0.971	0.965	0.926	0.970	0.966	
Median	1.000	0.839	0.908	0.990	0.994	0.982	0.986	0.981	0.994	
3th Q.	1.000	0.918	0.937	0.996	0.997	0.993	0.994	0.990	0.996	
Max	1.000	0.974	0.972	1.000	1.000	0.999	0.998	0.999	0.999	
Medians values for	or the single	e ammunitic	n types							
Ge357	0.995	0.933	0.927	0.994	0.985	0.988	0.986	0.978	0.972	
Ge45	1.000	0.658	0.954	0.992	0.972	0.975	0.986	0.973	0.996	
Ma357	0.995	0.841	0.952	0.937	0.994	0.977	0.992	0.935	0.966	
Ma45	0.970	0.458	0.470	0.945	0.917	0.597	0.473	0.897	0.856	
Pm45	1.000	0.740	0.878	0.933	0.994	0.974	0.994	0.981	0.994	
Re45	0.999	0.808	0.927	0.996	0.970	0.992	0.976	0.988	0.982	
Sa357	1.000	0.857	0.840	0.995	0.996	0.986	0.872	0.987	0.995	
Se357	1.000	0.874	0.902	0.948	0.999	0.994	0.996	0.988	0.996	
Se45	0.999	0.971	0.958	0.969	0.958	0.995	0.993	0.989	0.935	

M-M: measured-measured comparisons

Table S7 – Observed PCCs after between-ammunition comparisons of profiles predicted using the two tested combinations of models (CoM_1 and CoM_2) and both training schemes (extrapolation and interpolation).

		Extrapolation				Interpolation				
	М-М	Pred Meas	icted- sured	Pred Pred	icted- licted	Pred Meas	icted- sured	Pred Pred	icted- licted	
		CoM₁	CoM ₂	CoM₁	CoM ₂	CoM₁	CoM ₂	CoM₁	CoM ₂	
General statistics	;									
Min	-0.387	-0.232	-0.387	-0.025	0.191	-0.379	-0.437	0.185	0.188	
1st Q.	0.457	0.585	0.550	0.707	0.619	0.533	0.522	0.597	0.554	
Median	0.659	0.715	0.708	0.817	0.755	0.707	0.679	0.757	0.721	
3th Q.	0.785	0.867	0.845	0.893	0.879	0.816	0.817	0.853	0.830	
Max	0.990	0.993	0.997	0.989	0.986	0.997	0.992	0.994	0.994	
Medians values for	or the single	e ammunitic	on types							
Ge357	0.483	0.665	0.643	0.803	0.619	0.604	0.664	0.674	0.621	
Ge45	0.653	0.698	0.679	0.574	0.657	0.750	0.669	0.733	0.679	
Ma357	0.776	0.812	0.806	0.775	0.845	0.820	0.808	0.815	0.776	
Ma45	0.280	0.651	0.611	0.844	0.826	0.329	0.285	0.767	0.665	
Pm45	0.528	0.728	0.736	0.851	0.838	0.588	0.591	0.653	0.561	
Re45	0.679	0.693	0.667	0.829	0.712	0.682	0.643	0.748	0.711	
Sa357	0.657	0.692	0.755	0.857	0.825	0.714	0.701	0.766	0.797	
Se357	0.701	0.822	0.808	0.880	0.843	0.755	0.775	0.797	0.769	
Se45	0.686	0.759	0.734	0.786	0.656	0.743	0.782	0.739	0.718	

M-M: measured-measured comparisons

Numbers of pairwise comparisons and observed AUCs in ROC analysis

Table S8 – Numbers of pairwise comparisons carried out under each tested scenario (n) and observed areas under curves (AUCs) after receiver operating characteristics (ROC) analysis of PCC data.

	м-м		Extrap	olation		Interpolation					
		Pred Meas	Predicted- Measured		Predicted- Predicted		Predicted- Measured		Predicted- Predicted		
		CoM₁	CoM ₂	CoM ₁	CoM ₂	CoM₁	CoM₂	CoM₁	CoM ₂		
n (within)	54	108	108	27	27	108	108	27	27		
n (between)	576	864	864	324	324	864	864	324	324		
AUC	0.998	0.633	0.824	0.940	0.976	0.916	0.894	0.966	0.962		

M-M: measured-measured comparisons