Supporting Information for:

Magneto-controlled flow-injection device for electrochemical immunoassay of alpha-fetoprotein on magnetic beads using redoxactive ferrocene derivative polymer nanospheres

Bin Li,^{a,b} Wenyuan Pu,^a Houxi Xu,^a Lilin Ge,^{a,*} Hang Fai Kwok^{b,*} and Lihong Hu^a

^b Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Macau SAR. E-mail: hfkwok@um.edu.mo (H. F. Kwok)

^a Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia district, Nanjing, 215400, China. E-mail: gelilin@njucm.edu.cn (L. Ge).

S1. Characterization of MB-mAb₁

To investigate whether mAb₁ antibodies were covalently conjugated onto magnetic beads, we first used UV-vis absorption spectroscopy to monitor magnetic beads before and after modification with the antibody. The UV-vis absorption spectrum of the dispersion of the present magnetic beads is shown in Fig. S1A-a. The absorption spectra of magnetic beads were complicated, and increased with the wavelength decreased in the range from 600 nm to 200 nm. However, a strong absorption characteristic peak at 278 nm was observed after the functionalized magnetic beads reacted with the antibody (Fig. S1A-b). The peak at 278 nm derived from the conjugated antibody.¹ Further, we also FTIR to study the bionanocomposites. As is well known, the shapes of the infrared absorption bands of amide I groups at 1610-1690 cm⁻¹ corresponding to the C=O stretching vibration of peptide linkages and amide II groups around 1500-1600 cm⁻¹ from a combination of N-H bending and C-N stretching can provide detailed information on the secondary structure of proteins.² After interaction of mAb₁ with magnetic bead, the FTIR spectra of the functionalized magnetic beads displayed two absorption peaks at 1673 and 1561 cm⁻¹ (Fig. S1B-b), which corresponded to the amide I and II groups of the antibodies. The weak bands occurred in the region of 1200-1400 cm⁻¹ were assigned to the wagging and twisting vibrations of the -CH₂ group in these proteins and were commonly referred to as the progression bands.³ These results also revealed that mAb₁ antibody was covalently conjugated onto magnetic beads.

Fig. S1 (A) UV-vis absorption spectra and (B) FTIR spectra of magnetic beads (a) before and (b) after reaction with mAb₁ antibody.

Fig. S2 Cyclic voltammograms of FDNP-mAb₂/AFP/MB-mAb₁/ITO during the continuous scans in PBS (10 mM, pH 7.0) at 50 mV s⁻¹.

References

- 1. D. Tang, R. Yuan and Y. Chai, J. Phys. Chem. B, 2006, 110, 11640-11646.
- 2. M. Jackson, L. Choo and P. Watson, Biochim. Biophys. Acta, 1995, 1270, 1-6.
- 3. C. Feng, Y. Xu and L. Song, Sens. Actuators B, 2000, 66, 190-192.