Electronic Supplementary Material (ESI) for Analyst This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Reaction-based fluorometric analysis of *N*-bromosuccinimide by oxidative deprotection of dithiane

Yu Jeong Lee, Myung Gil Choi, Tae Jung Park and Suk-Kyu Chang*

Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea

Contents

- Fig. S1. Fluorescence spectra of probe 1 in the presence of NCS, NBS, and NIS.
- Fig. S2. UV-vis spectra of probe 1 in the absence and presence of NBS.
- **Fig. S3.** Ratiometric NBS-selective signaling of probe 1 expressed by the fluorescence intensity ratio (I_{460}/I_{376}) at 460 nm and 376 nm.
- **Fig. S4.** NBS-selective signaling of probe 1 expressed by the fluorescence intensity ratio (I/I_0) at 460 nm.
- **Fig. S5.** Effect of the presence of background anions on the NBS signaling of probe **1** as expressed by the fluorescence intensity ratio $(I_{(Anion+NBS)}/I_{NBS})$ at 460 nm.
- Fig. S6.NBS signaling of probe 1 in the presence of background aromatic halides
as expressed by the fluorescence intensity at 460 nm.

Fig. S7. Mass spectrum of the NBS-signaling product of probe 1.

- **Fig. S8.** Time-course plot of NBS signaling by probe **2** expressed by the fluorescence intensity change at 436 nm.
- Fig. S9.Effect of pH on the NBS signaling of probe 1 monitored by the changes in
fluorescence intensity at 460 nm.
- Fig. S10.Changes in fluorescence intensity at 460 nm of probe 1 as a function of
NBS concentration.
- Fig. S11. Plots of the red, green, and blue channel levels of signal images obtained using a smartphone under 365 nm UV LED illumination as a function of NBS concentration.
- **Fig. S12.** ¹H NMR spectrum of probe **1** in CDCl₃ (600 MHz).
- Fig. S13. ¹³C NMR spectrum of probe 1 in CDCl₃ (150 MHz).
- Fig. S14. Electron ionization mass spectrum of probe 1.
- **Fig. S15.** ¹H NMR spectrum of probe **2** in CDCl₃ (600 MHz).
- Fig. S16. 13 C NMR spectrum of probe 2 in CDCl₃ (150 MHz).
- Fig. S17. Electron ionization mass spectrum of probe 2.

Fig. S1. Fluorescence spectra of probe **1** in the presence of NCS, NBS, and NIS. [**1**] = 5.0 \times 10⁻⁶ M, [*N*-halosuccinimide] = 5.0 \times 10⁻⁵ M, [EDTA] = 1.0 \times 10⁻⁴ M in a mixture of acetate buffer (pH 4.76, 20 mM) and acetonitrile (1:1, v/v). λ_{ex} = 340 nm.

Fig. S2. UV–vis spectra of probe **1** in the absence and presence of NBS. $[1] = 1.0 \times 10^{-5}$ M, [NBS] = 1.0×10^{-4} M, [EDTA] = 2.0×10^{-4} M in a mixture of acetate buffer (pH 4.76, 20 mM) and acetonitrile (1:1, v/v).

Fig. S3. Ratiometric NBS-selective signaling of probe 1 expressed by the fluorescence intensity ratio (I_{460}/I_{376}) at 460 nm and 376 nm. [1] = 5.0×10^{-6} M, [NBS] = [Mⁿ⁺] = 5.0×10^{-5} M, [EDTA] = 1.0×10^{-4} M in a mixture of acetate buffer (pH 4.76, 20 mM) and acetonitrile (1:1, v/v). $\lambda_{ex} = 340$ nm.

Fig. S4. NBS-selective signaling of probe 1 expressed by the fluorescence intensity ratio (I/I_0) at 460 nm. [1] = 5.0×10^{-6} M, [NBS] = $[A^{n-}] = 5.0 \times 10^{-5}$ M, [EDTA] = 1.0×10^{-4} M in a mixture of acetate buffer (pH 4.76, 20 mM) and acetonitrile (1:1, v/v). $\lambda_{ex} = 340$ nm.

Fig. S5. Effect of the presence of background anions on the NBS signaling of probe 1 as expressed by the fluorescence intensity ratio ($I_{(Anion+NBS)}/I_{NBS}$) at 460 nm. [1] = 5.0×10^{-6} M, [NBS] = [A^{n-}] = 5.0×10^{-5} M, [EDTA] = 1.0×10^{-4} M in a mixture of acetate buffer (pH 4.76, 20 mM) and acetonitrile (1:1, v/v). λ_{ex} = 340 nm. Significantly reduced responses for iodide (highlighted in blue) and N₃⁻ (highlighted in green) were due to the consumption of NBS by the relevant redox reactions.

Fig. S6. NBS signaling of probe 1 in the presence of background aromatic halides as expressed by the fluorescence intensity at 460 nm. $[1] = 5.0 \times 10^{-6}$ M, $[NBS] = [aromatic halides] = 5.0 \times 10^{-5}$ M, $[EDTA] = 1.0 \times 10^{-4}$ M in a mixture of acetate buffer (pH 4.76, 20 mM) and acetonitrile (1:1, v/v). $\lambda_{ex} = 340$ nm.

Fig. S7. Mass spectrum of the NBS-signaling product of probe 1.

Fig. S8. Time-course plot of NBS signaling by probe **2** expressed by the fluorescence intensity change at 436 nm. [**2**] = 5.0×10^{-6} M, [NBS] = 5.0×10^{-5} M, [EDTA] = 1.0×10^{-4} M in a mixture of acetate buffer (pH 4.76, 20 mM) and acetonitrile (1:1, v/v). $\lambda_{ex} = 323$ nm.

Fig. S9. Effect of pH on the NBS signaling of probe 1 monitored by the changes in fluorescence intensity at 460 nm. $[1] = 5.0 \times 10^{-6}$ M, $[NBS] = 5.0 \times 10^{-5}$ M, $[EDTA] = 1.0 \times 10^{-4}$ M in a mixture of acetate buffer (pH 4.76, 20 mM) containing varying amounts of 0.1 M NaOH and acetonitrile (1:1, v/v). $\lambda_{ex} = 340$ nm.

Fig. S10. Changes in fluorescence intensity at 460 nm of probe **1** as a function of NBS concentration. $[\mathbf{1}] = 5.0 \times 10^{-6} \text{ M}$, $[\text{NBS}] = 0 - 1.0 \times 10^{-5} \text{ M}$, $[\text{EDTA}] = 1.0 \times 10^{-4} \text{ M}$ in a mixture of acetate buffer (pH 4.76, 20 mM) and acetonitrile (1:1, v/v). $\lambda_{\text{ex}} = 340 \text{ nm}$.

Fig. S11. Plots of the red, green, and blue channel levels of signal images obtained using a smartphone under 365 nm UV LED illumination as a function of NBS concentration. $[1] = 5.0 \times 10^{-6} \text{ M}, [\text{NBS}] = 0-5.0 \times 10^{-6} \text{ M}, [\text{EDTA}] = 1.0 \times 10^{-4} \text{ M}$ in a mixture of acetate buffer (pH 4.76, 20 mM) and acetonitrile (1:1, v/v). $\lambda_{ex} = 340$ nm.

Fig. S12. ¹H NMR spectrum of probe 1 in CDCl₃ (600 MHz).

Fig. S13. ¹³C NMR spectrum of probe 1 in CDCl₃ (150 MHz).

Fig. S15. ¹H NMR spectrum of probe 2 in CDCl₃ (600 MHz).

Fig. S16. ¹³C NMR spectrum of probe 2 in CDCl₃ (150 MHz).

Fig. S17. Electron ionization mass spectrum of probe 2.