A novel fluorescence method for activity assay and drug screening

of T4 PNK coupling rGO with ligase reaction

Hongyan Zhou^{1a†}, Chunyi Tong^{1a†}, Wei Zou^{3a†}, Yupei Yang², Yongbei Liu², Bin Li², Yan Qin², Wenya Dang¹, Bin Liu^{1,2*}, Wei Wang^{2*}

¹College of Biology, Hunan University, Changsha, 410082, China

²TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Material Medical Research Institute, School of Pharmacy, Hunan University of Chinese Medicine,

Changsha, 410208, China

³NHC key laboratory of birth defects research, prevention and treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410008, PR China

To whom correspondence should be addressed. Tel: +86-731-89720939; Fax: +86-731-89720939;

E-mail: <u>binliu2001@hotmail.com(B. Liu);</u> <u>wangwei402@hotmail.com(W. Wang)</u>

Table.S1 Sequences of Oligonucleotide probes used in this work

Oligo name	Base sequence (5' to 3')	Bases	5 'modification	Tm(°C)
P1	CACGCCATGTCGAAATTCTTGCGTGCCTAT	30		76.5
P2	GCAAGAATTTCGACATGGCGTG	22		67
P3	ATAGGCAC	8	FAM	<10
P4	GCAAGAATTTCGACATGGCGTG	22	phosphorylation	67
P5	ATAGGCAC	8		<10

Table. S2 Natural compounds information

S.no	Source	Name	Structure	Molecular Formula	Molecular Weight
a	Cherokee Rose	Euscaphic acid		C ₃₀ H ₄₈ O ₅	488.70

b	Cherokee Rose	Laevigatanoside A		C ₃₆ H ₅₈ O ₁₁	666.84
c	Cherokee Rose	Syringaresinol	H ₁ CO HO H ₂ CO HO H ₃ CO HO H ₁ CO HI OCH ₃ OCH ₃ OCH ₃ OCH ₃ OCH ₃	C ₂₂ H ₂₆ O ₈	418.45
d	kadsura coccinea	Kadsuphilol A	H ₃ CO HO H ₃ CO H ₃ CO O H	C ₂₂ H ₂₆ O ₇	402.1679
e	kadsura coccinea	Kadsutherin A	H ₃ CO H ₃ CO HO HO HO O O O Ang	C ₂₆ H ₃₀ O ₈	470.1941

f	kadsura coccinea	Abiesatrine J		C ₃₀ H ₄₆ O ₄	470.3396
g	kadsura coccinea	Masticadienoic acid	0 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C ₃₀ H ₄₆ O ₃	454.3447
h	kadsura coccinea	Seco-coccinic acid A		C ₃₀ H ₄₈ O ₃	456.3603
i	kadsura coccinea	Kadsurarin	HO H ₃ CO HO HO HO HO HO HO HO CH ₃	C ₂₉ H ₃₄ O ₁₀	542.2152
j	kadsura coccinea	Schisanlactone B		C ₃₀ H ₄₂ O ₄	466.3083

Fig.S1 (A) The effect of pH on the stability of the probe. Reaction buffer's pH is varied from 7.1 to 8.9. The concentration of Mg^{2+} is 10 mM. (B) The effect of cell extract on the stability of the probe. The concentration of Mg^{2+} and pH in reaction buffer is 10mM and 8.0, respectively. (C) The effect of serum on the stability of the probe. The concentration of Mg^{2+} and pH in reaction buffer is 10mM and 8.0, respectively. (C) The effect of serum on the stability of the probe. The concentration of Mg^{2+} and pH in reaction buffer is 10mM and 8.0, respectively. (C) The effect of serum on the stability of the probe. The concentration of Mg^{2+} and pH in reaction buffer is 10mM and 8.0, respectively. (D-F) The effect of various ions including $Na^{+}(D)$, $K^{+}(E)$, $Mg^{2+}(F)$ on the stability of the probe. The pH value of reaction buffer is 8.0.

Fig.S2 (A) The UV-vis spectrum of rGO and GO, [rGO] and [GO] are 20 mg/L, respectively. (B) The ζ-potential of rGO and GO, [rGO] and [GO] are 10 mg/L, respectively. (C) The Infrared Spectroscopy of rGO and GO.

Fig.S3 The feasibility analysis. (A) The quenching effect of rGO on P3. [P3] and [rGO] are 100 nM and 10 mg/L, respectively. (B) The quenching effect of rGO on (P1+P2+P3) and (P1+P4+P3). [P1], [P2], [P3], [P4] and [rGO] are 100 nM and 10 mg/L, respectively.