Electronic Supplementary Information

Amplified colorimetric detection of tetracycline based on enzyme-linked aptamer

assay with multivalent HRP-mimicking DNAzyme

Xin Gong,^a Xiao Li,^a Taiping Qing,^{*b} Peng Zhang^b and Bo Feng^{*ab}

^aCollege of Chemical Engineering, Xiangtan University, Xiangtan 411105, Hunan Province, China

^bCollege of Environment and Resources, Xiangtan University, Xiangtan 411105,

Hunan Province, China

* To whom correspondence should be addressed. Tel.: +86 731 58298259; Fax: +86 731 58298172; E-mail: fengbo@xtu.edu.cn. Correspondence may also be addressed to Taiping Qing. E-mail: taiping_qing@163.com

Name	Sequence (5' to 3')	Modification
Bio-aptamer	CGTACGGAATTCGCTAGCCCCCGGCAGGCCACGGC otamer TTGGGTTGGTCCCACTGCGCGTGGATCCGAGCTCCA CGTG	
H1	AGGGCGGGTGGGTGTTTAAGTTGGAGAATTGTACTT AAACACCTTCTTCTTGGGT	3-biotin
H2	H2 TGGGTCAATTCTCCAACTTAAACTAGAAGAAGGTGT TTAAGTTGGGTAGGGCGGG	
Trigger	AGAAGAAGGTGTTTAAGTA	/

 Table S1. Sequences of oligonucleotides uesd in this work

Fig. S1 UV-vis absorption spectra of multivalent HRP-mimicking DNAzyme synthesized with 300 nM G-quadruplex-rich nanowires solution, 300 ng/mL SA, 300 nM Bio-aptamer, and 20 µM hemin. a: 300 nM G-quadruplex-rich nanowires solution; b: multivalent HRP-mimicking DNAzyme; c: 300 ng/mL SA; d : 300 nM Bio-aptamer; e: 20 µM hemin

Fig. S2 (A) UV-vis absorption spectra of TC-BSA solution before (a) and after (b) immobilization, the concentration of TC-BSA was 10 μ g/mL; (B) UV-vis absorption spectra of TC-BSA solution before (a) and after (b) immobilization, the concentration of TC-BSA was 50 μ g/mL

•

Fig. S3 Effect of coating buffer on the detection system, 10 mM Bicarbonate buffer (CB, 3 mM Na₂CO₃, 7 mM NaHCO₃, pH 9.6), 10 mM phosphate buffer saline (PBS, 100 μ M KH₂PO₄, 500 μ M Na₂HPO₄(12H₂O), 10 mM NaCl, 200 mM KCl, pH 7.4), and 10 mM Tris–HCl buffer with different pH.

Fig. S4 Effect of blocking agents on the detection system, including 0.05% BSA, 1% BSA, and 0.05% defat dried milk

Fig. S5 Effect of binding buffers on the detection system, buffer A: 20 mM Tris-HCl (pH 8.0), buffer B: 20 mM Tris-HCl (pH 8.0), 100 mM NaCl; buffer C: 20 mM Tris-HCl (pH 8.0), 100 mM NaCl, 2 mM MgCl₂; buffer D: 20 mM Tris-HCl (pH 8.0), 100 mM NaCl, 2 mM MgCl₂, 1 mM CaCl₂

Fig. S6 Indirect competitive assay for TC detection using different concentrations of aptamer modified HRP-mimicking DNAzyme system (5, 10, 20 nM), the concentration of TC-BSA was $4 \mu g/mL$

Fig. S7 Indirect competitive assay for TC detection in buffer using different concentrations of TC-BSA conjugate (2, 4, 8 μ g/mL), the concentration of aptamer modified HRP-mimicking DNAzyme was 10 nM

Fig. S8 Effect of competitive reaction time on the detection system, the concentration of TC-BSA and aptamer modified HRP-mimicking DNAzyme was 4 μ g/mL and 10 nM, respectively

Method	Keywords	Liner range	LOD	Ref.
ELISA	Biotin-avodin, HRP	3.16×10 ⁻¹⁰ -3.16×10 ⁻⁷ M	0.048 µg/ml	1
ELISA	Aptamer, HRP	0.01-100 ng/ml	9.6×10 ⁻³ ng/ml	2
HPLC	Liquid-liquid micro- extraction	5-15 μg/mL	0.95-3.6 μg/mL	3
HPLC	Solid phase extraction, Validation	50-500 ng/mL	21 ng/mL	4
Colorimeter	Colorimeter	0.5 -10 μg/mL	1.5 μg/mL	5
ELISA	Class-Specific monoclonal antibody	0.26 -2.0 μg/L	15 µg/L	6
Electrochemistry	Electrochemica aptasensor, M-shape structure	≤ 3000 nM	\approx 329 ng/mL	7
Electrochemistry	PtNPs/C/GCE.	9.99-44.0 μM	\approx 1.9 mg/ml	8
Electrochemistry	Aptamer biosensor	0.1-100 ng/mL	1 ng/mL	9
ELISA	Multivalent HRP- mimicking DNAzyme systems, Aptamer	10-2-10 ⁴ ng/mL	8.1×10 ⁻² ng/ml	This work

 Table S2. Comparision of different methods for TC detection

Sample	Spiked concentration (ng/mL)	Detected concentration (ng/mL, mean±SD)	Recovery (%)
1	0.1	0.086 ± 0.0032	86
2	1	1.014 ± 0.0012	101.4
3	10	9.33±0.0021	93.3

Table S3. Recovery study

References

- M. Jeon, J. Kim, K.J. Paeng, S.W. Park and I.R. Paeng, *Microchemical Journal*, 2008, 88, 26-31.
- S. Wang, W. Yong, J. Liu, L. Zhang, Q. Chen and Y. Dong, *Biosens Bioelectron*, 2014, 57, 192-198.
- H. Xu, H.Y. Mi, M.M. Guan, H.Y. Shan, Q. Fei and Y.F. Huan, *Food Chem*, 2017, 232, 198-202.
- P. Moudgil, J.S. Bedi, R.S. Aulakh and J.P.S. Gill, *Food Anal Method*, 2018, 11, 1-9.
- 5. P. Masawat, A. Harfield and A. Namwong, Food Chem, 2015, 184, 23-29.
- Y. Chen, D. Kong, L. Liu, S. Song, H. Kuang and C. Xu, Food Anal Method, 2016, 9, 905-914
- S.M. Taghdisi, N.M. Danesh, Ramezani and K. Abnous, *Biosens Bioelectron*, 2016, 85, 509-514.
- R.T. Kushikawa, M.R. Silva, A.C.D. Angelo and M.F.S. Teixeira, Sensor Actuat B-Chem, 2016, 228, 207-213.
- J. Zhang, B. Zhang, Y. Wu, S. Jia, T. Fan, Z. Zhang and C. Zhang, *Analyst*, 2010, 135, 2706-2710.