1 Supporting information for

| 2 | Colorimetric method for glucose detection with enhanced signal intensity by using    |
|---|--------------------------------------------------------------------------------------|
| 3 | ZnFe <sub>2</sub> O <sub>4</sub> -carbon nanotube-glucose oxidase composite material |
| 4 | Chengke Wang*, Jiangyu Li, Rong Tan, Qingqing Wang and Zexiang Zhang                 |
| 5 |                                                                                      |
| 6 | College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, P. |
| 7 | R. China                                                                             |



**Fig. S1** The TEM image of  $Fe_3O_4$  nanomaterial.



Fig. S2 The feasibility experiment. The A<sub>652nm</sub> of the reaction solutions in the
presence of TMB and (1) ZnFe<sub>2</sub>O<sub>4</sub>-CNT-GOD and glucose, (2) ZnFe<sub>2</sub>O<sub>4</sub>, GOD and
glucose, (3) CNT-GOD and glucose, (4) ZnFe<sub>2</sub>O<sub>4</sub>-CNT and glucose, (5) ZnFe<sub>2</sub>O<sub>4</sub>CNT-GOD and (6) the A<sub>652nm</sub> of the reaction solution in the presence of TMB alone
(blank), respectively. The error bars represent the relative standard deviation of three
experimental results. The concentration of ZnFe<sub>2</sub>O<sub>4</sub>-CNT-GOD, CNT-GOD,
ZnFe<sub>2</sub>O<sub>4</sub>-CNT and ZnFe<sub>2</sub>O<sub>4</sub> is 5 mg/mL, the concentrations of glucose, GOD and
TMB are 200 µM, 4 mg/mL and 10 mM, respectively.



Fig. S3 The  $A_{652nm}$  of the reaction solutions in the presence of 2 mM  $H_2O_2$ , 10 mM TMB and 5 mg/mL ZnFe<sub>2</sub>O<sub>4</sub>-CNT, ZnFe<sub>2</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub> or buffer alone (blank), respectively. Inset indicates the corresponding images of the reaction solution. The error bars represent the relative standard deviation of three experimental results.



**Fig. S4** The selectivity experiment and metal ion interference experiment. The absorption spectra of reaction solutions in the presence of 200  $\mu$ M different materials, (A). The absorption spectra of the reaction solutions in the presence of 200  $\mu$ M glucose and different metal ions (B), respectively. The concentration of different metal ions in these solutions is 100  $\mu$ M. The error bars represent the relative standard deviation of three experimental results. The reaction solutions contained 5 mg/mL ZnFe<sub>2</sub>O<sub>4</sub>-CNT-GOD and 10 mM TMB, respectively.



**Fig. S5** The stability experiment. The  $A_{652nm}$  of the reaction solutions detected using the same batch of ZnFe<sub>2</sub>O<sub>4</sub>-CNT-GOD materials for continuous 20 days. The error bars represent the relative standard deviation of three experimental results. The reaction solutions contained 5 mg/mL ZnFe<sub>2</sub>O<sub>4</sub>-CNT-GOD, 200  $\mu$ M glucose and 10 mM TMB, respectively.



Fig. S6 The reusability of the composite materials. The  $A_{652nm}$  of the reaction 45 solutions after the ZnFe<sub>2</sub>O<sub>4</sub>-CNT-GOD materials were used for different cycles (left 46 axis) and the relative activity of ZnFe<sub>2</sub>O<sub>4</sub>-CNT-GOD materials after used for different 47 cycles (right axis), respectively. the catalytic activity of original ZnFe<sub>2</sub>O<sub>4</sub>-CNT-GOD 48 materials was defined as 100 %. The ZnFe<sub>2</sub>O<sub>4</sub>-CNT-GOD were attracted at the 49 bottom of microplate wells under external magnetic field, and were washed with 50 NaAc-HAc buffer, then they were used again after adding 200 µM glucose and 10 51 mM TMB. The error bars represent the relative standard deviation of three 52 experimental results. The original reaction solutions contained 5 mg/mL ZnFe<sub>2</sub>O<sub>4</sub>-53 CNT-GOD, 200 µM glucose and 10 mM TMB, respectively. 54

| Methods            | Linear range | Limit of detection | Reference |
|--------------------|--------------|--------------------|-----------|
| Electrochemistry   | 2-40 µM      | 3 µM               | 1         |
| Colorimetric assay | 10-500 μM    | 4 µM               | 2         |
| Colorimetric assay | 1-100 µM     | 1 µM               | 3         |
| Colorimetric assay | 12.6-101 μM  | 9.8 µM             | 4         |
| Fluorescent assay  | 80-420 μM    | 11 µM              | 5         |
| Fluorescent assay  | 2.0-100 μM   | 0.42 µM            | 6         |
| Photoluminescence  | 5-200 μM     | 1.32 μM            | 7         |
| Colorimetric assay | 0.8-250 μM   | 0.58 μΜ            | This work |

| 56 | Table S1 | The compari | ison of ou | method | with | previous | reports to | o detect | glucose. |
|----|----------|-------------|------------|--------|------|----------|------------|----------|----------|
|----|----------|-------------|------------|--------|------|----------|------------|----------|----------|

| 58 | Table S  | <b>52</b> Results | of the gluco | ose detection | on in | hum | ian se | erum              | samples             | by T | using | the  |
|----|----------|-------------------|--------------|---------------|-------|-----|--------|-------------------|---------------------|------|-------|------|
| 59 | clinical | method,           | commercial   | detection     | kit   | and | the Z  | ZnFe <sub>2</sub> | O <sub>4</sub> -CNT | -GO  | D ba  | ased |

| Sample         | Clinical | Addad | Commercial    | Pagovoru         | This      | Recovery         |  |
|----------------|----------|-------|---------------|------------------|-----------|------------------|--|
| (History of    | result   | (μM)  | detection kit | (Q())            | method    | Recovery         |  |
| diabetes, age) | (µM)     |       | (µM)          | (%) <sup>a</sup> | (µM)      | (%) <sup>a</sup> |  |
| 1              | 151.0    | 0.0   | 145.1±7.5     |                  | 143.5±6.2 |                  |  |
| (13 years, 67) | 131.0    | 40.0  | 185.4±8.9     | 97.1             | 193.5±4.3 | 101.3            |  |
| 2              | 68.0     | 0.0   | 62.4±8.1      |                  | 71.4±4.9  |                  |  |
| (3 years, 59)  | 08.0     | 40.0  | 113.4±7.7     | 105.0            | 106.7±3.8 | 98.8             |  |
| 3              | 06.0     | 0.0   | 93.3±7.8      |                  | 92.3±4.7  |                  |  |
| (0.5 year, 63) | 90.0     | 40.0  | 132.4±8.2     | 97.4             | 142.7±5.2 | 104.9            |  |
| 4              | 72.0     | 0.0   | 78.6±6.3      |                  | 72.3±4.6  |                  |  |
| (2 years, 57)  | 75.0     | 40.0  | 109.3±5.9     | 96.7             | 116.7±6.2 | 103.3            |  |
| 5              | 60.0     | 0.0   | 62.9±7.5      |                  | 72.2±5.4  |                  |  |
| (1 year, 68)   | 69.0     | 40.0  | 101.7±7.3     | 93.3             | 110.5±4.4 | 101.4            |  |
| 6              | 59.0     | 0.0   | 52.7±6.9      |                  | 54.7±5.1  |                  |  |
| (normal, 32)   | 58.0     | 40.0  | 93.5±7.3      | 95.4             | 97.3±4.7  | 99.3             |  |
| 7              | (1.0     | 0.0   | 57.8±8.2      |                  | 63.5±3.9  |                  |  |
| (normal, 29)   | 01.0     | 40.0  | 97.5±8.1      | 96.5             | 105.7±3.7 | 104.7            |  |
| a C            | Compared |       | with          | clini            | cal       | results          |  |

60 colorimetric method (*n*=3).

## 62 **References**

- 63 1. S. Alwarappan, C. Liu, A. Kumar and C.-Z. Li, *The Journal of Physical*64 *Chemistry C*, 2010, **114**, 12920-12924.
- 65 2. Y. Wang, B. Zhou, S. Wu, K. Wang and X. He, *Talanta*, 2015, **134**, 712-717.
- 66 3. J. Xie, H. Cao, H. Jiang, Y. Chen, W. Shi, H. Zheng and Y. Huang, *Anal.*67 *Chim. Acta*, 2013, **796**, 92-100.
- 68 4. A. Chaudhary, A. Gupta and C. K. Nandi, *RSC Advances*, 2015, 5, 4084969 40855.
- 70 5. K. Wannajuk, M. Jamkatoke, T. Tuntulani and B. Tomapatanaget,
  71 *Tetrahedron*, 2012, 68, 8899-8904.
- L. Wang, J. Zheng, Y. Li, S. Yang, C. Liu, Y. Xiao, J. Li, Z. Cao and R. Yang,
   *Anal. Chem.*, 2014, 86, 12348-12354.
- 74 7. Y. Li, Q. Ma, Z. Liu, X. Wang and X. Su, Anal. Chim. Acta, 2014, 840, 68-74.