Supporting information

Highly selective fluorescence 'turn off' sensing of picric acid and efficient cell labelling by water soluble luminescent anthracenebridged poly(*N*-vinyl pyrrolidone)

Rajshree Singh^a, Kheyanath Mitra^a, Shikha Singh^a, Sudipta Senapati^b, Vijay Kumar Patel^a, Sambhav Vishwakarma^a, Archana Kumari^a, Jaydeep Singh^a, Susanta K. Sen Gupta^a, Nira Misra^c, Pralay Maiti^b, Biswajit Ray^{a*}

^aDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi – 221005, India.

^bSchool of Material Science and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi – 221005, India.

^cSchool of Biomedical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi – 221005, India.

*Corresponding author's email: biswajitray2003@yahoo.co.in

Figure S1. ¹H NMR spectrum of 9,10 bis(azidomethyl)anthracene (in CDCl₃ at RT).

Figure S2.¹³C NMR spectrum of 9,10 bis(azidomethyl)anthracene (in CDCl₃, RT).

Figure S3. FTIR spectra of ATC-PNVP, alkyne terminated PNVP and anthracene azide (using KBr pellet).

Figure S4. UV-Visible spectra of alkyne terminated PNVP, anthracene azide and ATC-PNVP (1×10^{-6} M in water).

Figure S5. Fluorescence spectra of ATC-PNVP (500 μ L, 1 x 10⁻⁵ M) in the presence of different aliphatic and aromatic acids and phenolic nitro compounds (5 μ L, 1 x 10⁻³ M each).

Figure S6. Fluorescence spectra of ATC-PNVP (500 μ L, 1 x 10⁻⁵ M) in the presence of different (a) metal ions and (b) anions (5 μ L, 1 x 10⁻³ M each).

Figure S7. Fluorescence responses of ATC-PNVP (500 μ L, 1 x 10⁻⁵ M) in the presence of (a) different organic compounds (each 5 μ L, 1 x 10⁻³ M), (b) different metal ions (each 5 μ L, 1 x 10⁻³ M), and (c) different anions (each 5 μ L, 1 x 10⁻³ M) at λ_{ex} = 374 nm.

Figure S8. Effect of different analytes (anions + PA, organic compounds + PA, metal ions + PA, interference of all analytes + PA; 1 x 10^{-4} M each in mixture, 5 µL added) on the fluorescence quenching of ATC-PNVP (500 µL, 1 x 10^{-5} M) by picric acid (PA).

Figure S9. Steady state fluorescence titration of ATC-PNVP (500 μ L, 1 x 10⁻⁵ M) using picric acid (a) and the corresponding quenching efficiency plot (b) and Stern-Volmer plot (c) at 27 °C. Steady state fluorescence titration of ATC-PNVP (500 μ L, 1 x 10⁻⁵ M) using picric acid (d) and the corresponding quenching efficiency plot (e) and Stern-Volmer plot (f) at 37 °C.

Figure S10. (a) ¹H NMR spectra (in D₂O) of picric acid (5×10^{-2} M) alone and ATC-PNVP ($500 \ \mu$ L, 10^{-2} M) upon addition of 0, 50, 100 and 200 μ L picric acid (5×10^{-2} M) and (b) UV-Visible spectra of picric acid (1×10^{-5} M) alone and ATC-PNVP ($500 \ \mu$ L, 10^{-5} M) with increasing amounts of picric acid (1×10^{-3} M).

Figure S11. Fluorescence spectra of ATC- PNVP before and after addition of picric acid (PA) and triethyl amine (TEA).

Figure S12. Fluorescence spectra of ATC- PNVP in presence and absence of trifluoroacetic acid (TFA) or, picric acid (PA).

Figure S13. Overlap of absorption spectrum of picric acid (1 x 10^{-5} M) and fluorescence spectrum of ATC- PNVP (1 x 10^{-5} M).

Figure S14. Concentration *vs.* I_0/I plot of fluorescence quenching of ATC-PNVP by different concentrations of picric acid (0.002 - 2.0 mM; 50 µL each) for calibration [considering peak at ~402 nm, Fig. 5 (a)].

Table S1. Standard addition experiment - estimation of picric acid of different concentrations (added 50 μ L each) using ATC-PNVP (500 μ L, 10⁻⁵ M).

Sl. No.	Std. solution of	PA measured	Recovery*	Relative	
	PA	(mM)	(%)	Standard [#]	
	(mM)			Deviation (%)	
1	0.004	Not detected	NA	NA	
2	0.114	0.1045	91.66	2.960	
3	0.238	0.226	95.35	2.214	
4	0.300	0.306	102.00	2.647	
5	0.476	0.590	124.00	2.745	
6	0.666	1.806	271.00	0.470	

*Recovery= (Std. concentration/determined concentration) x 100.

[#]Relative standard deviation = (Standard deviation/ average value) x 100. (n=3).

Table S2. Comparison table of some previously reported anthracene based and polymer

 basedsensors for the detection of picric acid via fluorescence spectroscopy.

Sl. No.	Sensor material	Linearity/ detec-tion range (µM)	Limitof detection (LOD) (M)	Solvent	Ref. (correspon ding no. in article)
1.	N'-(anthracen-9- ylmethylene) isonicotinohydrazide	5.0-50	4.3 × 10 ⁻⁷	DMF	1 (23)
2.	9-Anthracenecarboxamide	1-100	1.0×10^{-6}	Ethanol	2 (24)
3.	2-(anthracen-9-yl methylene) N-phenylhydrazinecarbo- thioamide	-	1.0 × 10 ⁻⁷	Acetonitrile- water	3 (25)
4.	6-(10-(naphthalen-2- yl)anthracen-9-yl)-2-phenyl- 1H-benzo[de] isoquinoline- 1,3(2H)-dione	_	4.7 × 10 ⁻⁷	THF-water	4 (26)
5.	(7E,19E)-N-((anthracen-10- yl)methylene)-N'- ((anthracen-9-yl)methylene) propane-1,3-diamine copper complex	-	1.45 × 10 ⁻⁶	THF-HEPES	5 (28)
6.	Lanthanide based coordination polymer	-	9.8 × 10 ⁻⁵	CHCl ₃	6 (31)
7.	Microporous polymer based on fluorescein		7.22×10^{-7}	THF	7 (32)
8.	Poly(3,3'-((2-phenyl-9H- fluorene-9,9-diyl) bis(hexane-6,1-diyl))bis (1- methyl-1H-imidazol -3- ium)bromide) nanoparticles	_	3.09 × 10 ⁻¹¹	Water	8 (33)
9.	Poly(ethylenimine) dendrimer–D-glucose Schiff base conjugate (PEI-G) polymer nanoparticles	0.05-1 and 2-70	26.0 × 10 ⁻¹¹	Britton–Robi nson (BR) buffer-Water	9 (34)
10.	Polydiacetylene microtubes	0.5-20	0.48× 10 ⁻⁶	Water	10
11.	Coordination polymer $\{[Zn_2(L)(5-AIP)_2].3H2O\}_n$	0.2-1.2	0.70× 10 ⁻⁶	Water	11
12.	Terbium (III) coordination polymer	0-1000	1× 10 ⁻⁸	Water	12
<i>13</i> .	ATC-PNVP	10-300	6 × 10-6	Water	This work

Figure S15. (a) Typical paper disc prepared for paper based sensor fabrication. (b) Response of paper discs upon adsorption of ATC-PNVP of different concentrations (1 x 10^{-7} -1x 10^{-4} ; 5 μ L each). (c) Effect of the mixture of different inorganic salts [Cu(OAc)₂, HgCl₂, Na₂HPO₄, PbNO₃, FeSO₄; 0.1 mM each in the mixture; 4 μ L of mixture added] and the mixture of organic analytes (*p*-nitrophenol, oxalic acid, *p*-nitrobenzoic acid, benzylic acid, and phenol; 0.1 mM each in the mixture; 4 μ L of mixture added) on the paper sensors and their interference (inorganic salts + PA and organic analytes + PA, 0.1 mM each in the mixture; 4 μ L of mixture added) to the fluorescence quenching by picric acid.

Figure S16. (a) Steady state fluorescence spectra of BSA (500 μ L, 0.2 mg/mL) with increasing amounts of ATC-PNVP ($\lambda_{ex} = 280$ nm) at 37 °C and (b) the corresponding Stern-Volmer plot.

Figure S17. Synchronous fluorescence spectra of BSA (0.2 mg/mL) with increasing amounts of anthracene-bridged PNVP at (a) $\Delta \lambda = 15$ nm and (b) $\Delta \lambda = 60$ nm.

Figure S18. (a) 3D fluorescence spectra of BSA (0.2 mg/mL). (b) 3D fluorescence spectra of BSA and ATC-PNVP after saturation (BSA: ATC-PNVP = 1 : 2.98 wt ratio).

Figure S19. Overlap of the absorption spectrum of ATC-PNVP (blue line) (0.2 mg/mL) with the fluorescence emission spectrum of BSA (black line) (0.2 mg/mL).

Figure S20. Quantitative analysis for the intercellular uptake of the samples in (a) NIH-3T3 and (b) HeLa cells after treatment with ATC, PNVP and ATC-PNVP (0.2 mg/mL concentration each). Data represent mean \pm SD obtained from three different experiments, where *p < 0.05, **p < 0.01, ***p < 0.001.

Reference:

- Peng, Y.; Zhang, A. J.; Dong, M.; Wang, Y. W. A Colorimetric and Fluorescent Chemosensor for the Detection of an Explosive 2,4,6-Trinitrophenol (TNP). *Chem. Commun.* 2011, 47, 4505-4507.
- (2) Pandith, A.; Kumar, A.; Lee, J. Y.; Kim, H. S. 9-Anthracenecarboxamide Fluorescent Probes for Selective Discrimination of Picric Acid from Mono- and Di-nitrophenols in Ethanol. *Tetrahedron Lett.* **2015**, *56*, 7094-7099.
- (3) Udhayakumari, D.; Velmathi, S.; Venkatesan, P.; Wu, S. P. Anthracene Coupled Thiourea as a Colorimetric Sensor for F⁻ / Cu²⁺ and Fluorescent Sensor for Hg²⁺ / Picric Acid. J. Luminescence 2015, 161, 411-416.
- (4) Ma, H.; He, C.; Li, X.; Ablikim, O.; Zhang, S.; Zhang, M. A Fluorescent Probe for TNP Detection in Aqueous Solution Based on Joint Properties of Intramolecular Charge Transfer and Aggregation-Induced Enhanced Emission. *Sens. Actuators* B2016, 230, 746-752.
- (5) Reddy, K. L.; Anabathula, M. K.; Dhir, A.; Krishnan, V. Selective and Sensitive Fluorescent Detection of Picric Acid by New Pyrene and Anthracene Based Copper Complexes. J. Fluorescence 2016, 26, 2041-2046.
- (6) Srivastava, S.; Gupta, B. K.; Gupta, R. Lanthanide-Based Coordination Polymers for the Size-Selective Detection of Nitroaromatics. *Cryst. Growth Des.* 2017, *17*, 3907-3916.
- (7) Geng, T. M.; Ye, S. N.; Wang, Y.; Zhu, H.; Wang, X.; Liu, X. Conjugated Microporous Polymers-Based Fluorescein for Fluorescence Detection of 2,4,6-Trinitrophenol. *Talanta*2017, *165*, 282-288.

- (8) Malik, A. H.; Hussain, S.; Kalita, A.; Iyer, P. K. Conjugated Polymer Nanoparticles for the Amplified Detection of Nitro-explosive Picric Acid on Multiple Platforms. ACS Appl. Mater. Interfaces 2015, 7, 26968-26976.
- (9) Liu, S. G.; Luo, D.; Li, N.; Zhang, W.; Lei, J. L.; Li, N. B.; Luo, H. Q. Water-Soluble Nonconjugated Polymer Nanoparticles with Strong Fluorescence Emission for Selective and Sensitive Detection of Nitro-Explosive Picric Acid in Aqueous Medium. *ACS Appl. Mater. Interfaces* 2016, *8*, 21700-21709.
- (10) Yang, G.; Hu, W.; Xia, H.; Zou, G.; Zhang, Qijin. Highly Selective and Reproducible Detection of Picric Acid in Aqueous Media, Based on a Polydiacetylene Microtube Optical Waveguide. J. Mater. Chem. A2014, 2, 15560-15565.
- (11) Das, D.; Biradha, K.Luminescent Coordination Polymers of Naphthalene Based Diamide with Rigid and Flexible Dicarboxylates: Sensing of Nitro Explosives, Fe(III) Ion and Dyes. *Cryst. Growth Des.* 2018, 18, 3683-3692.
- (12) Yang, Y.; Song, X.; Xu, C.; Wang, Y.; Zhang, G.; Liu, W. A Multifunctional and Recyclable Terbium (III) CoordinationPolymer: Displaying Highly Selective and Sensitive Detection of Fe³⁺, Cr^{VI} anions, and Picric Acid in Aqueous Media. *Dalton Trans.* 2018, 47, 11077-11083.