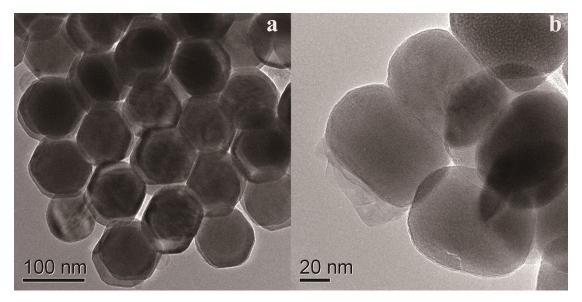
Supporting Information


Detection of procalcitonin (PCT) using the double antibody sandwich method based on fluorescence resonant energy transfer between upconversion nanoparticles and quantum dots

Yang Zhou, Xiangming Shao, Yuwang Han,* Hongman Zhang*

College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu, 211800, P. R. China.

Corresponding author:

Yuwang Han: e-mail, hanyw@njtech.edu.cn, Hongman Zhang: e-mail, hmzhang@njtech.edu.cn.

Figure S1 TEM images of $NaYF_4$:Yb, Er (a) before and (b) after hydrophilic functionalization.

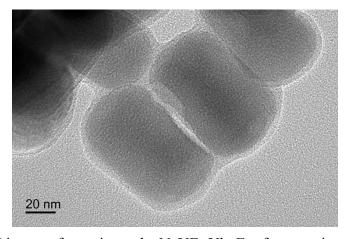


Figure S2 TEM image of protein on the NaYF₄:Yb, Er after protein conjugation.

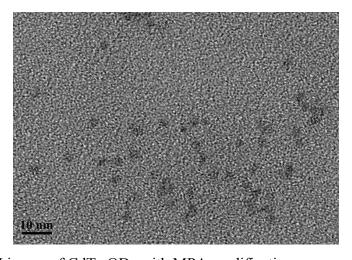


Figure S3 TEM image of CdTe QDs with MPA modification.

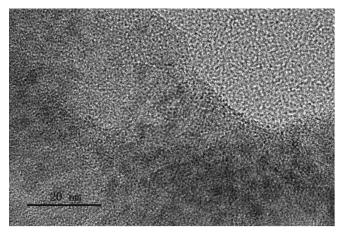
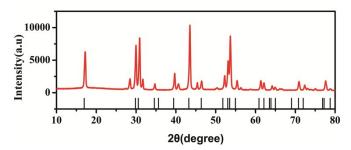
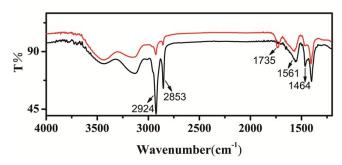
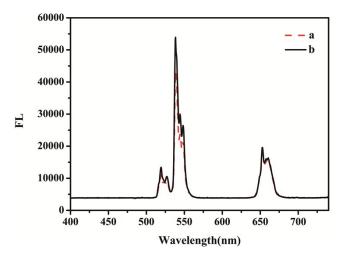
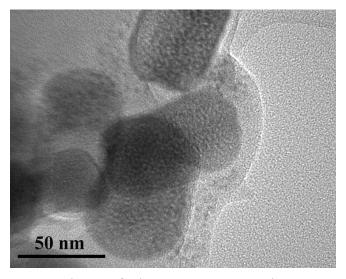
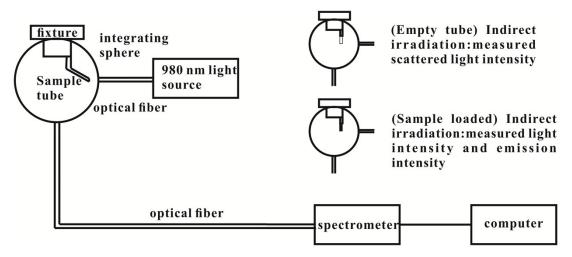
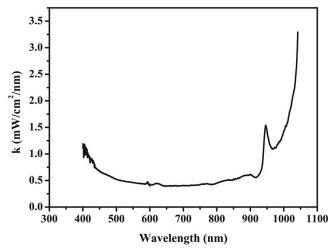


Figure S4 TEM image of QDs conjugated with antibody.


Figure S5 XRD pattern of NaYF₄:Yb, Er before PAA modification.


Figure S6 Infrared spectra of NaYF₄:Yb³⁺, Er³⁺ before (black line) and after (red line) PAA modification.


Figure S7 Room-temperature fluorescence spectra of 5.0 mg/mL NaYF₄: Yb, Er nanoparticles in cyclohexane (b) and after PAA modification in water (a) with a 980-nm laser.

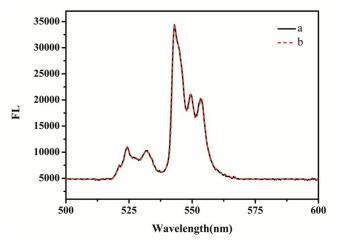

Figure S8 The TEM photo of the FRET system between NaYF₄ (Yb, Er) upconversion nanoparticles (UCNPs) and CdTe quantum dots (QDs).

Figure S9 Schematic representation of the system for UCNPs quantum yield determination.

Figure S10 Response curve of the fluorescence spectrometer using a standard light source (iD2000 Deuterium halogen combo light source).

Figure S11 Fluorescence spectra of PAA ($40\mu L$, 5.0 mg/mL) functionalized NaYF₄: Yb, Er nanoparticles at 37 °C before (a) and after one hour (b) in serum samples ($160\mu L$ of 0.02 ng/mL negative sample) with a 980nm laser.

1. Calculation of the Förster distance R₀:

The Förster distance was defined by Eq. (3):

$$R_0 = 0.02108(\kappa^2 \text{ qn}^{-4}\text{J})^{1/6} \text{ nm}$$
 Eq. (3)

where φ is the quantum yield of the donor, $\kappa^2 = 0.67$ (dynamic averaging) is the dipole orientation factor, n= 1.35 is the refractive index of the medium, and J (in M⁻¹ cm⁻¹ nm⁴) defines the spectral overlap between donor (Er³⁺ in the UCNPs) PL and acceptor (QD) absorption as a function in Eq. (4). According to the literature, the calculation of J was 6.04×10^{16} nm⁴ M⁻¹ cm⁻¹.

$$J = \int_{500nm}^{575nm} F(Er^{3+}) \varepsilon_{QD} \lambda^4 d\lambda$$
 Eq. (4)

References

1 FRET – Förster Resonance Energy Transfer, ed. I. L. Medintz and N. Hildebrandt, WileyVCH, Weinheim, Germany, **2014**