A Sc-3-HF Complex as a Fluorescent Chemsensors for the Selective Detection of Dihydrogen Phosphate

Wei Du,^a Chunman Jia,^{*ab} Yinfeng Zhang,^{*c}Qing Chen,^a Yile Wang,^aYan Huang,^dQi Zhang^{*ab}

^a Hainan Provincial Key Lab of Fine Chemistry, Hainan University, Haikou, Hainan 570228, China. Email: zhangqi@hainu.edu.cn; jiachunman@hainu.edu.cn.

^b Key Study Center of the National Ministry of Education for Tropical Resources Utilization, Hainan University, Haikou, Hainan 570228, China.

^cDepartment of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA. E-mail: yzhan249@jhmi.edu.

^d School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.

Supporting Information

Table of contents

1.	General procedure for the synthesis of compound 3-HF	S2
2.	References	S2
3.	¹ H NMR and ¹³ C NMR data	S2
4.	UV-vis absorption data of 3-HF	S4
5.	Fluorescence spectra dataand HRMS data of Sc-3-HF	S4
6.	FTIR spectra data	S4
7.	Fluorescence spectra dataand HRMS data of Al-3-HF	S4
8.	PH response of Sc-3-HF complex for H ₂ PO ₄ ⁻ ion	S5
9.	Fluorescence sensing datas and UV-vis absorption datas for F ⁻ ion	S6
10.	Fluorescence reversibility data	S7
11.	The data of practical application	S8

1. General procedure for the synthesis of compound 3-HF

Scheme S1 The synthesis of compound 3-HF

3-HFwas synthesized according to previous report¹. In a 250mL three-necked flask, 2hydroxyacetophenone (12 mmol) and benzaldehyde (12 mmol) was dissolved in ethanol (30 mL) and warmed to 50°C, then aqueous NaOH (50%, 5.4 mL) was dropwise to the reaction mixture during 15 min. The mixture was stirred at 50°C for 4 h and then kept at room temperature for 24 h. The yellow precipitate was formed and the reaction mixure was duiled with ice-cold water (80mL) until yellow precipitate was dissolved. The reaction mixture was neutralized with 1M HCl,mataining the temperature at 0°C. The precipitate was collected by filtration. Recrystallization from ethanol afforded the product 2'-hydroxychalcones, m=2.2874g, Yield=85%. And then in a 250mL round-bottom flask, 2'-hydroxychalcones (6mmol) was dissolved in ethanol (30mL) and aqueous NaOH (1.2 g in 5 mL water),the reaction mixture was placed in an ice-water bath and 4mL of 30% H₂O₂ solution was slowly added. The reaction mixture was stirred at room temperature for 6 h. The reaction mixture was neutralized with 1M HCl, mataining the temperature at 0°C. The yellow precipitate was gradually formed and collected by filtration. The precipitation was dried and the crude product was recrystallized from ethanol afforded the product 3-Hydroxyflavone (3-HF), m=1.0434g,Yield=73%.

2. References

1)B. Liu, J. Wang, G. Zhang, R. Bai, and Y.Pang, ACS Appl. Mater. Interfaces 2014, 6,4402-4407.

3.¹H NMR and ¹³C NMR data

Fig. S1 ¹H NMR and ¹³C NMR of 3-HF

4.UV-vis absorption data of 3-HF

Fig.S2 The UV-vis absorption of 3-HF (10 μ M, in CH₃CN) in a CH₃CN–H₂O (1 : 4, v/v) solution upon addition of various metal ions (10 μ M, in H₂O).

5.Fluorescence spectra data and HRMS data of Sc-3-HF

Fig. S3 (A)A linear plot of $1/\Delta F$ versus $1/[Sc^{3+}]$. (B) ESI mass spectrum of Sc-3-HF.

6.FTIR spectra data

Fig. S4(A) The whole FTIR spectra of 3-HF, 3-HF–Sc³⁺ and 3-HF–Al³⁺ complex. (B) The 1600 region of spectra of 3-HF, 3-HF–Sc³⁺ and 3-HF–Al³⁺ complex.

7. Fluorescence spectra data and HRMS data of Al-3-HF

Fig. S5 (A) Titration curves of 3-HF (10 μ M, in CH₃CN) in CH₃CN-H₂O (1 : 4, v/v) solution upon addition of Al(ClO₄)₃·9H₂O (0 ~ 70 μ M, in H₂O). Inset (left) shows the color change of the solution before (left) and after (right) the addition of Al³⁺; Inset (right) : plot of the fluorescence intensity at 470 nm vs. [Al³⁺]. (B) Job's plot of the Al-3-HF complex in CH₃CN-H₂O (1 : 4, v/v) solution. The total concentration of 3-HF and Al³⁺ was 10 μ M. The fluorescence intensity was monitored at 470 nm. (C) A linear plot of1/ Δ F versus 1/[Al³⁺] and association constant of the Al-3-HF complex was 1.9 × 10⁵ M⁻¹. (D) ESI mass spectrum of Al-3-HF.

8. PH response of Sc-3-HF complex for H₂PO₄⁻ ion

Fig.S6 pH response of the fluorescent chemsensor at the range of pH 2.0 -13.0.

9.Fluorescence sensing datas for F- ion

Fig. S7 (A)Fluorescence response of 3-HF (10 μ M, in CH₃CN) in the presence of Al³⁺ (10 μ M, in H₂O) or Al³⁺ (10 μ M, in H₂O) with other metal ions (Mⁿ⁺, 50 μ M, in H₂O) in a CH₃CN-H₂O (1 : 4, v/v) solution. (1) Blank; (2) Al³⁺; (3) Al³⁺+Co²⁺; (4) Al³⁺+ Zn²⁺; (5) Al³⁺+Pb²⁺; (6) Al³⁺+Ag⁺; (7) Al³⁺ +Ni²⁺; (8) Al³⁺+La³⁺; (9) Al³⁺+Fe³⁺; (10) Al³⁺ +Hg²⁺; (11) Al³⁺+Mn²⁺; (12) Al³⁺+Fe²⁺; (13) Al³⁺+Cd²⁺; (14) Al³⁺+Ca²⁺; (15) Al³⁺+Cr³⁺; (16) Al³⁺+Na⁺; (17) Al³⁺ +K⁺; (18) Al³⁺+Mg²⁺; (19) Al³⁺+Cu²⁺; (20) Al³⁺ + Pd²⁺; (21) Al³⁺+Sc³⁺. The fluorescence intensity was monitored at 470 nm. (B)Fluorescence spectra of the Al-3-HF complex (10 μ M, Al³⁺ : 1 equiv.) in CH₃CN-H₂O (1 : 4, v/v) solution upon addition of various anions (50 μ M, in H₂O). (C)The UV-vis absorption of 3-HF (10 μ M), Al-3-HF complex (10 μ M) + F⁻ (1.0 equiv.).

Fig. S8 Fluorescence intensity change profiles of 3-HF (10µM, in CH₃CN) in the presence of Sc³⁺

 $(10\mu M, in H_2O)$ and $Al^{3+}(10\mu M, in H_2O)$ with $H_2PO_4^-$, $F^-(in H_2O)$ in CH_3CN-H_2O (1 : 4, v/v) solution.Left: (1,1) 3-HF+Sc^{3+}+Al^{3+}+F^-(2.0equiv.)+ $H_2PO_4^-$ (1.0equiv.); (1,2)3-HF+Sc^{3+}+Al^{3+}+F^-(2.0equiv.); (1,3)3-HF+Sc^{3+}+Al^{3+}+F^- (1.0 equiv);(1,4)3-HF+Sc^{3+}+Al^{3+}. Right:(2, 1) 3-HF+Sc^{3+}+Al^{3+}+H_2PO_4^- (2.0equiv.) +F-(1.0 equiv.);(2, 2)3-HF+Sc^{3+}+Al^{3+}+H_2PO_4^- (2.0equiv.);(2,3)3-HF+Sc^{3+}+Al^{3+}+H_2PO_4^- (1.0equiv.);(2,4)3-HF+Sc^{3+}+Al^{3+}. The fluorescence intensity was monitored around 480 nm.

Fig. S9 (A) Titration curves of theAl-3-HFcomplex (10 μ M, 1 equiv. Al³⁺) in CH₃CN-H₂O (1 : 4, v/v) solution upon addition of KH₂PO₄ (0 ~ 9 μ M, in H₂O) solution. (B) A plot of I₀/(Iversus [F⁻]. (C) A linear plot of I₀/(I₀-I) versus 1/[F⁻] and the binding constant was calculated to be 8.7 × 10⁶ M⁻¹.

10.Fluorescence reversibility data

Fig. S10 Reversibility study of probe 3-HF (10 μ M) in CH₃CN-H₂O (1 : 4, v/v) toward Al³⁺ (40 μ M) upon addition of F⁻ (40 μ M).

11. The data of practical application

Fig.S11(A)Images of the test strips coated with Sc-3-HF for transformation among these ions. Left to right:Sc-3-HF, Sc-3-HF + H₂PO₄⁻, Sc-3-HF + H₂PO₄⁻ + Al³⁺, Sc-3-HF + H₂PO₄⁻ + Al³⁺ + F⁻, Sc-3-HF + H₂PO₄⁻ + Al³⁺ + F⁻ + Sc³⁺.(B) Images of the test strips coated with Al-3-HF for transformation between F⁻ and Al³⁺.Left to right: Al-3-HF, Al-3-HF + F⁻, Al-3-HF + F⁻ + Al³⁺, Al-3-HF + F⁻ + Al³⁺ + F⁻ + Al³⁺ + F⁻ + Al³⁺. (C) Images of the test strips coated with Al-3-HF for transformation among these ions. Left to right: Al-3-HF, Al-3-HF + F⁻, Al-3-HF + F⁻ + Sc³⁺, Al-3-HF + F⁻ + Sc³⁺ + H₂PO₄⁻, Al-3-HF + F⁻ + Sc³⁺ + H₂PO₄⁻ + Al³⁺.