Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2018

Supporting Information for

2 Stir Bar Sorptive Extraction and Thermal Desorption – Gas Chromatography/Mass Spectrometry for

3 Determining Phosphorus Flame Retardants in Air Samples

4 Julius Matsiko,^{a,b} Honghua Li,^a Pu Wang,^a Huizhong Sun,^{a,b} Shucheng Zheng,^{a,b} Dou Wang,^{a,b} Weiwei Zhang,^{a,b} Yanfen

5 Hao,^{a,b} Yingming Li,^a Qinghua Zhang, ^{a,b,c,*} and Guibin Jiang ^{a,b}

6

1

- 7 ^aState Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences,
- 8 Chinese Academy of Sciences, Beijing 100085, China

9 ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

10 cInstitute of Environment and Health, Jianghan University, Wuhan 430056, China

1	1
Т	
_	

12	Table of Contents	
13	Cover PagePa	age S0
14	Table of ContentsPa	age S1
15	Section A: Chemical StandardsPa	age S3
16	Section B: High Volume Active – Air Sampling ProcedurePa	age S4
17	Section C: Chromatographic Analysis ConditionsPa	age S5
18	Figure S1: Sampler Design Pa	age S6
19	Figure S2: Standard Pareto Chart and Flow Rate against Peak Area PlotPa	age S7
20	Figure S3: Chromatograms for the Field Blank, Intermediate Calibration Point and Real SamplePa	age S8
21	Figure S4: PDMS-PAS Uptake Profiles	age S9
22	Figure S5: Meteorological Conditions during SamplingPag	ge S10
23	Table S1: Physical – Chemical Properties of the Target Compounds Page	ge S11
24	Table S2: Desorption Flow Rate Optimization Results Page	ge S13
25	Table S3: Extrapolation of the Desorption Flow Rate Optimization Model	ge S13
26	Table S4: Control of Blanks Page	ge S14

27	Table S5: Accuracy and Storage Stability Page S15
28	Table S6: Retention times, Monitoring Ions and 2 nd and 4 th calibration points' recoveries Page S16
29	Table S7: PUF active samples' concentrations Page S17
30	Table S8: PDMS-PAS Accumulated Masses Page S18
31	References
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	

45 Section A

46 Chemical Standards

Chemical standards of the ten target PFRs, i.e., Triethyl phosphate (TEP), Tri-n-propyl phosphate (TPP), Tri-n-butyl 47 phosphate (TNBP), Tris(2-chloroethyl) phosphate(TCEP), Tris(2-chloroisopropyl)phospahte(TCIPP), Tris(1,3-dichloro-2-48 propyl) phospahte (TDCIPP), Tris(2-butoxyethyl) phosphate (TBOEP), Triphenyl phospahte (TPHP), 2-Ethylhexyl diphenyl 49 phosphate (EHDPP) and Tris(2-ethylhexyl) phospahte (TEHP), and the internal labelled standards, Tri-n-butyl phosphate-50 d_{27} (d_{27} -TNBP) and Triphenyl phospahte- d_{15} (d_{15} -TPHP) were purchased as 50 ± 2.5µg/mL solutions (chemical purity > 51 98%) in Toluene from Wellington Laboratories (CANADA). The working solutions for the individual standards were prepared 52 by appropriate dilution with toluene (>99.5%) which was purchased from Mallinckrodt Baker (Phillipsburg, USA). Nitrogen 53 gas (99.999% pure) was used for thermal desorption of the stir bars, while helium gas (99.999%) was used as a carrier gas for 54 55 chromatographic analysis.

56 Section B

57 High Volume – Active Air Sampling (HV–AAS) procedure

Before active air sampling, the PUF disks were prewashed by dichloromethane/hexane (1/1, v/v) using accelerated solvent 58 extraction (ASE 300, Dionex Corporation). The glass fiber filters were baked at 450°C for 6 hours to minimise their water and 59 organic matter blanks ¹ prior to weighing and then deployment. Thereafter, the high volume – active air sampler (SIBATA HV– 60 1000R, ID 220135, Version 1.00) was equipped with two PUF disks (for gas phase) and a quartz fiber filter (QFF) (to remove the 61 particulate phase compounds). The bottom PUF disc was to trap analytes that could break through the top PUF disc.² The active 62 air sampling rate was 500 L/min. Four active air samples were collected on different days during the passive sampling campaign 63 of 21 days. Active sample volume was 720 m³. After sampling, the QFFs and PUF disks were stored at - 20°C prior to extraction. 64 Method blanks were controlled at various levels to gather information about any background and procedural contamination. 65

66

67

68

69

70

72 Section C

73 Chromatographic analysis

Analyte chromatographic separation was carried out using a DB-5MS column ($30m \times 0.25 \text{ mm i.d.}, 0.25\mu\text{m}$ film thickness, Agilent J&W GC Columns). The initial column temperature was kept at 90° C for 5 minutes, ramped at 10° C/min to 240°C and finally ramped at 8°C/min to 320°C. The carrier gas velocity was 1.00 mL/min. Analyte detection was carried out using the electron impact (EI) ionisation in selected ion mornitoring (SIM) mode. The ion source and interface temperatures were set at 230 and 300°C, respectively and the solvent cut time was 5 minutes. The total analytical time was 30 minutes.

79

82 Figure S1. Our sampler design. Four PDMS-PASs were clumped inside the two stainless steel domes

- 88 Figure S2. Standardized Pareto chart for the effect of desorption flow rate and the corresponding interactions on the total area (a)
- 89 (Vertical line in the chart defines 95% confidence level) and a plot of total peak area against desorption flow rate (b).

91 Figure S3. GC-MS Chromatograms of the field blank (a), intermediate calibration point (b) and real sample (c). TCEP, TCIPP

92 and TPHP were quantified. The rest of the compounds were detected but not quantified (c).

95 Figure S4. Uptake profiles of equivalent air volumes (ratio of accumulated PAS mass to gas phase AAS concentration) plotted against the 96 deployment time (2017.12.21 to 2018.01.11). The error bar represents the standard deviation of the analytical results obtained from the four 97 PDMS-PASs. The insets represent the polynomial fits that were used to determine when the uptake goes into the curvilinear region.

No.	Compound	Practical Abbrevia tion (PRAB)	В.р (°С)	Structure	CAS Number	MW	Log K _{ow}	Кос	Vapour Pressure (Pa)
1	Triethyl phosphate	TEP	216		78-40-0	182.16	0.80	36	5.25E+01
2	Tri-n-propyl phosphate	ТРР	254		513-08-6	224.24	1.87	676	5.77E-01
3	Tri-n-butyl phosphate	TNBP	289		126-73-8	266.32	3.60	977	1.71E00
4	Tris(2- chloroethyl) phosphate	TCEP	351		115-96-8	285.49	1.47	150	1.44E-02
5	Tris(2- chloroisopro pyl)phosphat e	TCIPP	342		13674-84-5	327.56	2.59	275	2.69E-03
6	Tris(1,3- dichloro-2- propyl) phosphate	TDCIPP	457		13674-87-8	430.90	3.27	1440	5.43E-06
7	Tris(2- butoxyethyl) phosphate	TBOEP	414		78-51-3	398.48	3.75	1020	3.33E-06

Table S1. The Physical – Chemical Properties of the Target PFRs ^{3,4}

Table S2. Experimental results for desorption flow optimization

run	Flow rate	Average Total Peak	Analysis of Variance for Total Area						
		Area $\pm CV_{(n=3)}$							
	mL/min		Source	Sum of Squares	Df	Mean Square	F-Ratio	P-Value	
1	100	1220400 ± 6	A:Flow rate	7.62762E9	1	7.62762E9	0.22	0.6696	
2	40	996996 ± 9	AA	2.23101E10	1	2.23101E10	0.65	0.4792	
3	20	1082460 ± 11	AAA	3.04281E9	1	3.04281E9	0.09	0.7854	
4	20	1082514 ± 10	Total error	1.02998E11	3	3.43328E10			
5	60	1482934 ± 5	Total (corr.)	1.46896E11	6				
6	80	1134740 ± 4							
7	100	1164580 ± 9							

Table S3. Extrapolation of the model to establish the best operating conditions

Step	Desirability	Total Area	Flow rate (mL/min)
0	0.361255	1.25288E6	60.0
1	0.372564	1.26079E6	62.0
2	0.382793	1.26796E6	64.0
3	0.393477	1.27543E6	66.4
4	0.40349	1.28244E6	69.2
5	0.413612	1.28953E6	74.0
6	0.414912	1.29044E6	76.4

Targets	Lab blanks	Transit	Field	PDs ^a	PDs ^b	Spikes	¹, n= 5	Spikes	s ^b ,n=5
	(pg), n= 9	blanks	blanks	(pg), n=8	(pg),	100pg	1000pg	100pg	1000pg
		(pg), n= 5	(pg), n= 8		n=9				
TEP	< 29.0	< 29.0	< 29.0	< 29.	< 29.	87 ± 14	110 ± 1	99 ± 15	118 ± 18
				0	0		4		
TPP	<31.0	< 31.0	<31.0	< 31.	<31.0	80 ± 3	112 ± 5	94 ± 12	129 ± 6
				0					
TNBP	<42.0	<42.0	< 42.0	< 42.	<42.0	78 ± 3	107 ± 1	82 ± 12	106 ± 4
				0					
ТСЕР	<40.0	<40.0	<40.0	< 40.	<40.0	85 ± 4	127 ± 1	107 ± 18	110 ± 12
				0			2		
TCIPP	<42.0	<42.0	< 42.0	< 42.	<42.0	100 ± 17	109 ± 9	94 ± 20	97 ± 12
				0					
TDCIPP	< 46.0	<46.0	< 46.0	< 46.	< 46.	95 ± 20	146 ± 1	81 ± 17	118 ± 4
				0	0		9		
TBOEP	<48.0	< 48.0	< 48.0	< 48.	< 48.	100 ± 9	143 ± 5	88 ± 17	129 ± 14

121 Table S4. Control of blanks and transit spikes (compared with laboratory spikes).

				0	0				
TPHP	< 42.0	< 42.0	< 42.0	< 42.	< 42.	98 ± 13	95 ± 12	77 ± 7	129 ± 19
				0	0				
EHDPP	<40.0	< 40.0	<40.0	< 40.	<40.0	94 ± 18	115 ± 1	101 ± 13	120 ± 16
				0			6		
TEHP	< 38.0	< 38.0	< 38.0	< 38.	< 38.	89 ± 13	115 ± 1	97 ± 17	129 ± 18
				0	0		4		

123 PDs^a and PDs^b refer to post conditioning detections without and with the internal standard solution, respectively.

124 Spikes^a refers to laboratory spikes while Spikes^b refers to transit spikes.

125 Table S5. Accuracy (Recovery) and storage stability results.

Target compounds	Accuracy (Recovery (%) ±	= CV (n=5))		Storage stability;Recovery (%) \pm CV (n=3)				
	50pg	500pg	2000pg	0 days	3 days	7 days	10 days	14 days	
ТЕР	120 ± 13	97 ± 11	100 ± 17	100 ± 13	101 ± 4	100 ± 13	86 ± 13	96 ± 10	
TPP	100 ± 11	103 ± 5	101 ± 14	103 ± 7	95 ± 6	102 ± 1	87 ± 10	96 ± 8	
TNBP	107 ± 6	102 ± 3	100 ± 12	101 ± 2	103 ± 4	100 ± 2	93 ± 8	96 ± 5	

	ТСЕР	124 ± 19	101 ± 6	113 ± 14	101 ± 9	104 ± 10	85 ± 17	75 ± 2	74 ± 6
	TCIPP	103 ± 19	100 ± 10	108 ± 17	96 ± 9	88 ± 11	94 ± 9	108 ± 14	99 ± 5
	TDCIPP	77 ± 7	102 ± 5	93 ± 19	99 ± 4	85 ± 10	81 ± 15	98 ± 12	96 ± 8
	TBOEP	110 ± 9	111 ± 5	95 ± 17	111 ± 3	84 ± 11	89 ± 20	91 ± 18	95 ± 7
	ТРНР	85 ± 13	98 ± 13	94 ± 20	90 ± 6	90 ± 4	99 ± 12	109 ± 5	114 ± 1
	EHDPP	101 ± 12	94 ± 13	98 ± 13	96 ± 9	81 ± 8	88 ± 20	92 ± 13	95 ± 7
	ТЕНР	95 ± 11	91 ± 9	107 ± 20	91 ± 10	90 ± 9	103 ± 11	101 ± 3	118 ± 7
126									
127									
128									
129									
130									
131	Table S6. Compounds retention times, monitoring ions and recoveries at the second and fourth calibration levels.								

Targets	Retention Time (min)	Μ	lonitoring Ions	Recovery (%) \pm CV (n=5)		
		Quantifier ion	Qualifier ions	100pg	1000pg	
TEP	6.89	99	155, 127	91 ± 10	89 ± 9	
TPP	11.69	99	141, 183	89 ± 18	115 ± 4	

TNBP	15.41	155	211, 125	78 ± 4	108 ± 2
ТСЕР	16.82	249	251	87 ± 3	127 ± 12
TCIPP	17.20	277	279	107 ± 15	107 ± 19
TDCIPP	22.69	381	379	102 ± 15	129 ± 7
TBOEP	23.40	299	199	96 ± 14	119 ± 11
ТРНР	23.48	326	325	73 ± 12	96 ± 18
EHDPP	23.67	251	250	103 ± 13	104 ± 18
TEHP	23.89	99	113, 211	89 ± 11	111 ± 20

135

136	Table S7.	PUF	Active a	ir samples	concentrations.
-----	-----------	-----	----------	------------	-----------------

		Concent	Mean (pg/m ³)	CV(n=4)		
Sampling Date	2017.12.21	2017.12.28	2018.01.03	2018.01.10		
TEP	< 5.2	< 5.2	< 5.2	< 5.2	< 5.2	
TPP	7.1	8.2	7.3	2.9	6.4 ± 2.3	36.7

TNBP	< 41.7	< 41.7	< 41.7	< 41.7	< 41.7	
TCEP	6.3	6.2	6.2	6.9	6.4 ± 0.32	5.0
TCIPP	10.2	10.6	5.8	4.5	7.8 ± 3.1	39.9
TDCIPP	< 4.2	< 4.2	< 4.2	< 4.2	< 4.2	
TBOEP	< 30.1	< 30.1	< 30.1	< 30.1	< 30.1	
TPHP	2.6	2.7	2.5	1.3	2.3 ± 0.68	29.8
EHDPP	< _{4.1}					
TEHP	nd	nd	nd	nd	nd	

140 For the compounds that were not quantified, <MLOQ is recorded based on the real sample data. *nd* represents not detected.

144 Table S8. Analyte masses accumulated by the stir bars after a given time interval

Accumulated mass (pg) from 2017.12.21 to 2018.01.11									
	3 days	6 days	9 days	12 days	15 days	18 days	21 days		
TEP	< 522.6	< 522.6	< 522.6	< 522.6	< 522.6	< 522.6	< 522.6		
TPP	< 238.8	< 238.8	< 238.8	< 238.8	< 238.8	< 238.8	< 238.8		

	TNBP	< 602.2	< 602.2	< 602.2	< 602.2	< 602.2	< 602.2	< 602.2
	TCEP	154 ± 27	289 ± 45	427 ± 31	534 ± 111	607 ± 87	619 ± 72	855 ± 192
	TCIPP	56 ± 4	102 ± 45	151 ± 30	186 ± 38	227 ± 33	277 ± 112	295 ± 138
	TDCIPP	< 13.5	< 13.5	< 13.5	< 13.5	< <u>13.5</u>	< <u>13.5</u>	< 13.5
	TBOEP	< 57.8	< 57.8	< 57.8	< 57.8	< 57.8	< 57.8	< 57.8
	TPHP	< 33.0	55 ± 22	72 ± 17	94 ± 33	120 ± 40	149 ± 58	158 ± 71
	EHDPP	< _{6.0}						
	TEHP	< 28.2	< 28.2	< 28.2	< 28.2	< 28.2	< 28.2	< 28.2
146								
147								

149

150

151 References

- 152 1 F. Mercier, P. Glorennec, O. Blanchard and B. Le Bot, J. Chromatogr. A, 2012, 1254, 107-114.
- 153 2 R. Liu, Y. Lin, R. Liu, F. Hu, T. Ruan and G. Jiang, *Talanta*, 2016, 147, 69-75.
- 154 3 I. van der Veen and J. de Boer, *Chemosphere*, 2012, **88**, 1119-1153.

4 Å. Bergman, A. Rydén, R. J. Law, J. de Boer, A. Covaci, M. Alaee, L. Birnbaum, M. Petreas, M. Rose, S. Sakai, N. Van den
Eede and I. van der Veen, *Environ. Int.*, 2012, 49, 57-82.