Supporting Information

Multiplexed microRNA Expression Profiling by Combined Asymmetric PCR and Label-Free Detection using Silicon Photonic Sensor Arrays

Richard M. Graybill,¹ Maria C. Cardenosa-Rubio,^{1,2} Hongwei Yang,^{3,4} Mark D. Johnson,^{3,4} and Ryan C. Bailey^{1,2*}

¹Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Matthews Ave., Urbana, IL 61801, USA

²Department of Chemistry, University of Michigan, 930 N. University Ave. Ann Arbor, MI 48104, USA

³Department of Neurological Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA

⁴Department of Neurological Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA

Table of Contents:

Table S1. Summary of nucleic acid sequences	. S2
Table S2. Details on fluid flow conditions	. S3
Table S3. Patient Information	. S3
Table S4. Fold changes presented in heat map	. S4
Figure S1. Amplification validation of miRNA targets	. S5
Figure S2-22. aPCR amplification plots obtained from patient samples	. S6

 Table S1. Summary of nucleic acid sequences

	Sequence (5'-3')				
hsa miRNA-let7f	UGAGGUAGUAGAUUGUAUAGUU				
hsa miRNA-219	UGAUUGUCCAAACGCAAUUCU				
hsa miRNA-10b	UACCCUGUAGAACCGAAUUUGUG				
hsa miRNA-29a	UAGCACCAUCUGAAAUCGGUUA				
hsa miRNA-335	UCAAGAGCAAUAACGAAAAAUGU				
hsa miRNA-124a	UAAGGCACGCGGUGAAUGCC				
hsa miRNA-222	AGCUACAUCUGGCUACUGGGUCUC				
hsa miRNA-34a	UGGCAGUGUCUUAGCUGGUUGU				
hsa miRNA-155	UUAAUGCUAAUCGUGAUAGGGGU				
Conserved Stem Loop Primer	GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGAT miRNA				
	specific overhang				
miR-let7f SLP overhang	AACTATAC				
miR-219 SLP overhang	AGAATTG				
miR-10b SLP overhang	CACAAATTC				
miR-29a SLP overhang	TAACCG				
miR-335 SLP overhang	ACATTTTT				
miR-124a SLP overhang	GGCATTC				
miR-222 SLP overhang	GAGACCC				
miR-34a SLP overhang	ACAACCA				
miR-155 SLP overhang	ACCCCT				
Conserved reverse primer	GTGCAGGGTCCGAGGT				
miR-let7f forward primer	CGCGCTGAGGTAGTAGATT				
miR-219 forward primer	CGCGTGATTGTCCAAACG				
miR-10b forward primer	GCGTACCCTGGTAGAACC				
miR-29a forward primer	CGCTAGCACCATCTGAAAT				
miR-335 forward primer	CGCGTCAAGAGCAATAACG				
miR-124a forward primer	CGTAAGGCACGCGGT				
miR-222 forward primer	CGAGCTACATCTGGCTACT				
miR-34a forward primer	GCGTGGCAGTGTCTTAGC				
miR-155 forward primer	CGCGTTAATGCTAATCGTGAT				

Table S2. Details on fluid flow conditions used in the assay

Step	Flow Rate (µL/min)	Duration (min)		
Hybridization Buffer	20	5		
RT-aPCR Product	20	15		
Hybridization Buffer	20	5		

Table S3. Research Subject Information

Subject	Gender	Age	Cancer type			
Α	М	62	Glioma – grade IV			
В	М	42	Glioma – grade IV			
С	М	47	Glioma – grade IV			
D	F	52	Glioma – grade II			
E	F	67	Glioma – grade IV			
F	F	75	Glioma – grade IV			
G	F	29	Glioma – grade III			
Н	F	48	Glioma – grade IV			
I	F	37	Glioma – grade III			
J	F	35	Glioma – grade III			
К	М	26	Glioma – grade IV			
L	М	38	Glioma – grade IV			
М	F	67	Glioma – grade IV			
N	М	25	Glioma – grade III			
0	F	27	Glioma – grade II			
Р	М	30	Glioma – grade III			
Q	М	51	Glioma – grade IV			
R	F	63	Meningioma – grade I			
S	F	69	Glioma – grade IV			
Т	F	74	Meningioma – grade I			

Subject	let	miR-							
	7f	10b	29a	34a	124a	155	219	222	335
Α	0.83	0.68	-0.92	-1.18	-2.76	-1.81	-1.19	-1.78	-1.27
В	0.73	0.55	0.09	0.05	0.12	-0.7	0.61	3.02	0.08
С	0.8	0.88	-0.14	-0.27	0.91	2.42	0.71	1.45	0.07
D	-0.03	0.7	-1.65	-2.97	-0.08	0.73	0.53	1.7	0.07
E	-3.1	-2.95	-2.63	-2.44	0.11	1.29	0.27	8.05	-6.21
F	-3.38	-3.72	-3.31	-2.62	-0.02	1.96	-0.01	1.87	0.07
G	-3.09	-1.35	-2.89	-2.51	-1.89	1.03	-0.3	0.04	0.1
Н	-2.6	0.23	-2.22	-0.74	0.81	2.98	0.84	2.67	-0.03
I	-1.71	-0.43	-1.8	-2.85	-2.02	1.68	0.05	2.07	-2.25
J	1.21	1.43	1	1.66	1.51	3.6	2.86	4.32	-0.68
К	2.35	3.76	3.9	1.15	4.17	8.02	6.86	9.44	1.95
L	3.36	5.68	5.42	2.1	6.3	9.08	8.14	11.67	0.91
М	0.73	0.94	1.08	0.76	2.09	3.7	3.79	3.9	-2.51
Ν	0.69	1.46	1.38	0.88	2.23	3.14	1.54	3.15	-7.03
0	0.99	1.23	1.19	0.61	0.97	-0.38	-1.24	0.86	-6.44
Р	2.73	5.46	1.97	0.32	6.23	8.51	3.54	6.45	5.05
Q	0.11	0.83	0.17	2.35	-0.51	3.73	4.32	7.05	-4.29
R	1.94	1.68	2.6	-1.37	-1.76	4.4	5.38	9.48	-1.73
S	1.33	0.98	1.16	-2.98	0.31	4.59	-0.13	6.27	-3.55
Т	0.37	0.86	0.83	-1.21	-1.1	4.38	5.01	7.85	-1.36

 Table S4.
 Fold Changes Presented in heat map (log 2)

Figure S1. Amplification validation of miRNA targets. In order to prove linear amplification of all miRNA targets, samples of each target were subjected to the aPCR-microring assay at varying concentrations using a stem loop primer concentration of 200 μ M. The results validated the designed primer sets by displaying log-linear amplification profiles.

Figure S2. Amplification traces obtained using a 10 ng input for a pooled healthy RNA sample.

Figure S3. Amplification traces obtained using a 10 ng input for Subject A.

Figure S4. Amplification traces obtained using a 10 ng input for Subject B.

Figure S5. Amplification traces obtained using a 10 ng input for Subject C.

Figure S6. Amplification traces obtained using a 10 ng input for Subject D.

Figure S7. Amplification traces obtained using a 10 ng input for Subject E.

Figure S8. Amplification traces obtained using a 10 ng input for Subject F.

Figure S9. Amplification traces obtained using a 10 ng input for Subject G.

Figure S10. Amplification traces obtained using a 10 ng input for Subject H.

Figure S11. Amplification traces obtained using a 10 ng input for Subject I.

Figure S12. Amplification traces obtained using a 10 ng input for Subject J.

Figure S13. Amplification traces obtained using a 10 ng input for Subject K.

Figure S14. Amplification traces obtained using a 10 ng input for Subject L.

Figure S15. Amplification traces obtained using a 10 ng input for Subject M.

Figure S16. Amplification traces obtained using a 10 ng input for Subject N.

Figure S17. Amplification traces obtained using a 10 ng input for Subject O.

Figure S18. Amplification traces obtained using a 10 ng input for Subject P.

Figure S19. Amplification traces obtained using a 10 ng input for Subject Q.

Figure S20. Amplification traces obtained using a 10 ng input for Subject R.

Figure S21. Amplification traces obtained using a 10 ng input for Subject S.

Figure S22. Amplification traces obtained using a 10 ng input for Subject T.