Supporting Information

A Non-enzymatic nanoceria electrode for non-invasive glucose monitoring

Lei Jiang^{a, §,*}, Qi Xue^{a,§}, Chuanjie Jiao^a, Hanyun Liu^b, Yan Zhou^c, Hongchao Ma^a, Qingli Yang^d

^a State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China

^b The Affiliated Hospital of Qingdao University, Shandong, Qingdao 266003, China

^c College of Science, China University of Petroleum, Qingdao 266580, China

^d College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China

[§] These authors contributed equally to this work.

* Correspondence to: L. Jiang, Email: leijiang@upc.edu.cn, Q. Xue,

Email:schruel.online@outlook.com, tel: 0086-532-86981568, fax: 0086-532-86981569.

Figure S1. The fabrication procedure of AuNPs/CeO₂-CTS/GCE

XRD and XPS analysis of CeO₂

The XRD pattern of CeO₂, corresponding to JCPDS (34-0394), shows the peaks at 25.58, 33.13, 47.52, 56.39, 59.13, and 69.44° 2 ϑ , which were assigned to the CeO₂ (111), (200), (220), (311), (222), (400), and (311) planes, respectively (Fig. S2a), which were indexed to the well crystalline face centered cubic structure of CeO₂. Its morphology was also characterized by TEM (JEOL 1300) that further confirmed its crystalline cubic structure (insert).

Qualitative and quantitative analysis of Ce³⁺ content in commercial nanoceria samples were studied by X-ray photoelectron spectroscopy (XPS)(Fig. S2b). Data was fitted by using the software XPSPEAK41, and the notation of Burroughs^[1]. According to the notation, u_0 , u, u', u''', u'''' were labeled to the peaks belonging to the Ce $3d_{5/2}$ band, and v_0 , v, v', v''', v'''' were labeled to the peaks belonging to the Ce $3d_{3/2}$ band. Therefore, the XPS investigation indicated that Ce³⁺ and Ce⁴⁺ species can be differentiated with distinct line shapes corresponding to various states: Ce³⁺= u_0+u+v_0+v'' , while Ce⁴⁺=v+v''+v'''+u+u''+u''', so Ce³⁺ atomic fraction can be obtained through the ratio of the integrated peak areas from the follow equation:

$$[Ce^{3+}] = \frac{u_0 + u' + v_0 + v'}{u_0 + u + u' + u'' + u''' + v_0 + v + v' + v'' + v'''}$$

In this equation, at the highest binding energy peak u''' and v''' are located at 916.9 and 898.3 eV respectively. They are the result of a multiples (v and u) corresponding to the spin-orbit split $3d_{5/2}$ and $3d_{3/2}$ core holes. Another binding energy peak, v'' is located at 898.0 eV, and u'' at about 907 eV is present in the higher energy of Ce $3d_{3/2}$ peak. Besides, u' and v' are located at 903.4 and 885.2 eV respectively are due to the Ce $3d^94f^1$ O $2p^6$ final state. While the lowest binding energy state u₀ and v₀ are at 899.1 and 880.9 eV respectively that are because of Ce $3d^94f^2$ O $2p^5$ state[2]. The obtained data was input into XPSPEAK41 software, after the fitting, its Ce³⁺ atomic fraction can be calculated to be about 34%, which indicates the good electron-transfer ability of CeO₂ during the oxidation of glucose by AuNPs.

Figure S2. (a) XRD patterns of CeO₂. (Inset: TEM image of CeO₂ nanoparticles); (b) Ce3d XPS of CeO₂ NPs.

Figure 3S. The reproducibility of the signal in the solution contains 3.0 mM glucose. The CV was repeated for 5 times.

Reference

[1] Burroughs P, Hamnett A, Orchard A F, et al. *Journal of the Chemical Society, Dalton Transactions*, **1976** (17): 1686-1698.

[2] Bêche E, Charvin P, Perarnau D, et al. Surface and Interface Analysis, 2008, 40(3-4): 264-267.