Identification of Proteins and Bacteria Based on Metal Ions-

Gold Nanoclusters Sensor Array

Yayan Wu*&, Bing Wang&, Kai Wang, Peng Yan

Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life

Science and Technology, Xi'an Jiaotong University, 710049, Xi'an, PR China

*Corresponding authors: yayanwu@mail.xjtu.edu.cn. Fax: +86 29 82663941

Table of Contents

Figure S1. Fluorescence emission spectra of protein-stabilized AuNCs (BSA-AuNCs, HAS-AuNCs and Lys-AuNCs)

Figure S2. Fluorescence emission spectra of Lys-AuNCs after co-precipitation with different cations.

Table S1 The results of precipitation formation after co-precipitation of BSA-AuNCs with various cations at different concentrations

Table S2 The results of precipitation formation after co-precipitation of Lys-AuNCs with various cations at different concentrations.

Table S3. Jackknifed Classification Matrix of LDA analysis in 8 proteins differentiation (5 μ M) Table S4. Jackknifed Classification Matrix of LDA analysis in 8 proteins differentiation (0.5 μ M) Table S5. Jackknifed Classification Matrix of LDA analysis in 8 proteins differentiation (50 μ M) Table S6. Jackknifed Classification Matrix of LDA analysis in 5 bacteria differentiation

Figure S1. Fluorescence emission spectra of protein-stabilized AuNCs (BSA-AuNCs, HAS-AuNCs and Lys-AuNCs) at the excitation wavelength at 365nm.

Figure S2. Fluorescence emission spectra of Lys-AuNCs after co-precipitation with different cations. The concentration of Zn^{2+} , Cd^{2+} , Cu^{2+} , Ni^{2+} , Co^{2+} , and Pb^{2+} is 0.02 mol L⁻¹.

Cations	0.005	0.01	0.02	0.04	0.06	0.08	0.1
added	(mol L ⁻¹)						
Zn ²⁺	-	*	+	+	+	+	+
Cd^{2+}	-	*	+	+	+	+	+
Mg^{2+}	-	-	-	-	-	-	-
Co ²⁺	-	-	*	+	+	+	+
Cu ²⁺	-	-	*	*	*	*	*
Ca ²⁺	-	-	-	-	-	-	-
Ni ²⁺	-	*	+	+	+	+	+
Pb ²⁺	-	*	*	*	*	*	*

Table S1 The results of precipitation formation after co-precipitation of BSA-AuNCs with various cations at different concentrations.

"-" No precipitation, "*" Partial precipitation, "+" Complete precipitation.

Table S2 The results of precipitation formation after co-precipitation of Lys-AuNCs with various cations at different concentrations.

Cations	0.005	0.01	0.02	0.04	0.06	0.08	0.1
added	(mol L-1)						
Zn ²⁺	-	*	+	+	+	+	+
Cd ²⁺	-	*	+	+	+	+	+
Mg ²⁺	-	*	+	+	+	+	+
Co ²⁺	-	*	+	+	+	+	+
Cu ²⁺	-	*	+	+	+	+	+
Ca ²⁺	-	-	-	-	-	-	-
Ni ²⁺	*	+	+	+	+	+	+
Pb ²⁺	-	-	*	+	*	*	*

	BS	Casei	Lysozy	Papai	Hemoglob	Lipas	Myoglobi	Pepsi	Trypsi	%corre
	А	n	me	n	in	e	n	n	n	ct
BSA	6	0	0	0	0	0	0	0	0	100
Casein	0	6	0	0	0	0	0	0	0	100
Lysozyme	0	0	6	0	0	0	0	0	0	100
Papain	0	0	0	6	0	0	0	0	0	100
Hemoglobi	0	0	0	0	6	0	0	0	0	100
n										
Lipase	0	0	0	0	0	6	0	0	0	100
Myoglobin	0	0	0	0	0	0	6	0	0	100
Pepsin	0	0	0	0	0	0	0	6	0	100
Trypsin	0	0	0	0	0	0	0	0	6	100
Total	6	6	6	6	6	6	6	6	6	100

Table S3. Jackknifed Classification Matrix of LDA analysis in 9 proteins differentiation (5µM)

The jackknifed classification illustrates no overlap between the groups at all, and all the cases are classified with 100% classification accuracy.

Cumulative proportion of total dispersion

0.506	0.970	0.993	0.998	1.000	1.000	

From the above table, the values of different factors can be calculated. The first and second factors contribute largely to the classification, 50.6% and 46.4% (0.970-0.506) respectively. The third factor and fourth factor account for 2.3% (0.993-0.970) and 0.5% (0.998-0.993). So, it could be easily found that the first two factors can make a good identification to 8 proteins.

	BS	Casei	Lysozy	Papai	Hemoglob	Lipas	Myoglobi	Pepsi	Trypsi	%corre
	А	n	me	n	in	e	n	n	n	ct
BSA	6	0	0	0	0	0	0	0	0	100
Casein	0	6	0	0	0	0	0	0	0	100
Lysozyme	0	0	6	0	0	0	0	0	0	100
Papain	0	0	0	6	0	0	0	0	0	100
Hemoglobi	0	0	0	0	6	0	0	0	0	100
n										
Lipase	0	0	0	0	0	6	0	0	0	100
Myoglobin	0	0	0	0	0	0	6	0	0	100
Pepsin	0	0	0	0	0	0	0	6	0	100
Trypsin	0	0	0	0	0	0	0	0	6	100
Total	6	6	6	6	6	6	6	6	6	100

Table S4. Jackknifed Classification Matrix of LDA analysis in 9 proteins differentiation (0.5µM)

The jackknifed classification illustrates no overlap between the groups at all, and all the cases are classified with 100% classification accuracy.

Cumulative proportion of total dispersion

0.630	0.895	0.990	0.995	0.999	1.000

The first and second factors account for 63% and 26.5% (0.895-0.630). These figures are clearly larger than the third and fourth factors, 9.5% (0.990-0.895) and 0.5% (0.995-0.990).

	BS	Casei	Lysozy	Papai	Hemoglob	Lipas	Myoglobi	Pepsi	Trypsi	%corre
	А	n	me	n	in	e	n	n	n	ct
BSA	6	0	0	0	0	0	0	0	0	100
Casein	0	6	0	0	0	0	0	0	0	100
Lysozyme	0	0	6	0	0	0	0	0	0	100
Papain	0	0	0	6	0	0	0	0	0	100
Hemoglobi	0	0	0	0	6	0	0	0	0	100
n										
Lipase	0	0	0	0	0	6	0	0	0	100
Myoglobin	0	0	0	0	0	0	6	0	0	100
Pepsin	0	0	0	0	0	0	0	6	0	100
Trypsin	0	0	0	0	0	0	0	0	6	100
Total	6	6	6	6	6	6	6	6	6	100

Table S5. Jackknifed Classification Matrix of LDA analysis in 8 proteins differentiation (50 µM)

The jackknifed classification illustrates no overlap between the groups at all, and all the cases are classified with 100% classification accuracy.

Cumulative proportion of total dispersion

0.735	0.887	0.997	0.999	1.000	1.000

The first three factors account for 73.5%, 15.2% (0.887-0.735) and 11% (0.997-0.887) respectively. And the fourth factor just contribute little to the classification (0.2%, 0.999-0.997).

	Bacillus aceticus	Bacillus natto	Bacillus	Escherichia coli	Pseudomonas aeruginosa	%correct
Bacillus aceticus	2	0	4	0	0	33
Bacillus natto	0	6	0	0	0	100
Bacillus	2	0	4	0	0	67
Escherichia coli	0	0	0	6	0	100
Pseudomonas aeruginosa	0	0	0	0	0	100
Total	4	6	8	6	6	80

Table S6. Jackknifed Classification Matrix of LDA analysis in 5 bacteria differentiation

The jackknifed classification illustrates overlap between Bacillus aceticus and Bacillus. Four cases of Bacillus aceticus were misclassified to Bacillus, and the accuracy is just 33%. Similarly, two cases of Bacillus were misclassified to Bacillus aceticus, and the accuracy is around 67%. Besides, the rest of cases can be totally classified.

Cumulative proportion of total dispersion

0.813 0.931 0.997 1.000					
	0.813	0.931	0.997	1.000	

It is worth noting that the first factor (81.3%) is significantly larger than other factors. The second factor accounts for 11.8% (0.931-0.813), and this figure is larger than the third factor (6.6%, 0.997-0.931).