Regression Plots for Mix of 16 Controlled Synthetic Cathinones
Table S1 Retention time measurements for chromatographic columns employed in this study for the mixture of 16 synthetic cathinones.

Compound	Acquity UPLC BEH C8 $1.7 \mu \mathrm{~m} 2.1 \times 100 \mathrm{~mm}$ RT (minutes)	Acquity UPLC BEH C18 $1.7 \mu \mathrm{~m} 2.1 \times 100 \mathrm{~mm}$ RT (minutes)	Acquity UPLC BEH Phenyl $1.7 \mu \mathrm{~m} 2.1 \times 100 \mathrm{~mm}$ RT (minutes)	Acquity UPLC HSS T3 $1.8 \mu \mathrm{~m} 2.1 \times 100 \mathrm{~mm}$ RT (minutes)	```Acquity UPLC HSS PFP \(1.8 \mu \mathrm{~m} 2.1 \times 100 \mathrm{~mm}\) (RPC) RT (minutes)```
Cathinone	2.05	1.84	1.72	1.91	2.23
Methcathinone	2.37	2.13	2.01	2.22	2.53
Mephedrone	4.49	3.95	3.60	3.94	3.39
Buphedrone	3.83	3.27	3.02	3.34	3.08
4-Fluoromethcathinone	2.89	2.64	2.51	2.74	2.93
3-Fluoromethcathinone	2.80	2.54	2.40	2.67	2.93
Pentedrone	5.76	4.96	4.54	4.88	4.10
4-Methylethcathinone	5.14	4.58	4.22	4.55	4.00
Methylone	2.80	2.46	2.40	2.67	2.78
4-MePPP	5.59	5.06	4.92	5.09	4.78
α-PBP	4.72	4.08	4.10	4.22	4.27
Butylone	4.29	3.65	3.60	3.77	3.39
α-PVP	6.47	5.87	5.68	5.87	5.73
Pentylone	6.09	5.37	5.10	5.32	4.47
MDPV	6.80	6.31	6.26	6.34	6.18
Naphyrone	10.32	10.67	10.03	10.26	10.18

	Acquity UPLC HSS PFP	Acquity UPLC HSS PFP		Acquity UPLC BEH C8 1.7
	$1.8 \mu \mathrm{~m} 2.1 \times 50 \mathrm{~mm}$	$1.8 \mu \mathrm{~m} 2.1 \times 100 \mathrm{~mm}$	Acquity UPLC BEH HIL	$\mu \mathrm{m} 2.1 \times 50 \mathrm{~mm}$ high pH
	(HILIC) ${ }^{\text {a }}$	(HILIC) ${ }^{\text {a }}$	$1.7 \mu \mathrm{~m} 2.1 \times 50 \mathrm{~mm}$	MeOH ${ }^{\text {b }}$
Compound	RT (minutes)	RT (minutes)	RT (minutes)	RT (minutes)
Cathinone	1.66	2.92	1.92	0.88
Methcathinone	2.15	4.00	1.92	1.18
Mephedrone	2.33	4.27	1.82	1.79
Buphedrone	1.91	3.59	1.55	1.67
4-Fluoromethcathinone	2.01	3.77	1.82	1.35
3-Fluoromethcathinone	1.85	3.50	1.68	1.41
Pentedrone	1.70	3.37	1.55	2.44
4-Methylethcathinone	2.23	4.18	1.55	2.44
Methylone	2.15	4.00	1.92	1.18
4-MePPP	3.31	5.95	1.68	3.40
α-PBP	2.86	5.37	1.55	3.32
Butylone	1.91	3.59	1.60	1.67
α-PVP	2.63	5.09	1.31	4.08
Pentylone	1.70	3.37	1.31	2.44
MDPV	2.63	5.09	1.31	4.04
Naphyrone	3.31	6.26	1.19	5.20
${ }^{\text {a }}$ All column combinations were originally investigated using the PFP HILIC 5 cm column. The PFP HILIC 10 cm column was then used for the final multi-dimensional separations in order to increase the peak capacity of the second dimension.				
${ }^{\mathrm{b}}$ High pH methanol was used as the organic modifier due to solubility concerns encountered with high pH acetonitrile.				

Fig. $\mathbf{S 1}$ Regression plots for mixture of 16 synthetic cathinones using retention time data shown in Table S1. The plots show column combinations utilizing the BEH C8 column as the first dimension column (${ }^{1} \mathrm{D}$) and various second dimension columns (${ }^{2} \mathrm{D}$). Combinations were first evaluated using the PFP HILIC 5 cm column. The PFP HILIC 10 cm column was used in the final multi-dimensional separations to increase peak capacity. The BEH C8 column was used in order to examine the effects of high pH elution in the second dimension. High pH methanol was used instead of high pH acetonitrile due to solubility concerns.

Fig. S2 Regression plots for mixture of 16 synthetic cathinones using retention time data shown in Table S1. The plots show column combinations utilizing the BEH C18 column as the first dimension column (${ }^{1} \mathrm{D}$) and various second dimension columns (${ }^{2} \mathrm{D}$). Plots of inverse combinations are not shown as they produce the same R2 values. Combinations with the PFP HILIC 10 cm and high pH methanol are not shown as these were investigated as alternatives to the PFP HILIC 5 cm column once it was determined that the BEH C8 and PFP HILIC 5 cm columns were the best combination.

Fig. $\mathbf{S 3}$ Regression plots for mixture of 16 synthetic cathinones using retention time data shown in Table S 1 . The plots show column combinations utilizing the Phenyl column as the first dimension column (${ }^{1} \mathrm{D}$) and various second dimension columns (${ }^{2} \mathrm{D}$). Plots of inverse combinations are not shown as they produce the same R2 values. Combinations with the PFP HILIC 10 cm and high pH methanol are not shown as these were investigated as alternatives to the PFP HILIC 5 cm column once it was determined that the BEH C8 and PFP HILIC 5 cm columns were the best combination.

RPC T3 vs HILIC HILIC

Fig. S4 Regression plots for mixture of 16 synthetic cathinones using retention time data shown in Table S1. The plots show column combinations utilizing the T 3 column as the first dimension column (${ }^{1} \mathrm{D}$) and various second dimension columns (${ }^{2} \mathrm{D}$). Plots of inverse combinations are not shown as they produce the same R2 values. Combinations with the PFP HILIC 10 cm and high pH methanol are not shown as these were investigated as alternatives to the PFP HILIC 5 cm column once it was determined that the BEH C8 and PFP HILIC 5 cm columns were the best combination.

Fig. $\mathbf{S 5}$ Regression plots for mixture of 16 synthetic cathinones using retention time data shown in Table S 1 . The plots show column combinations utilizing the RPC PFP column as the first dimension column (${ }^{1} \mathrm{D}$) and various second dimension columns (${ }^{2} \mathrm{D}$). Plots of inverse combinations are not shown as they produce the same R2 values. Combinations with the PFP HILIC 10 cm and high pH methanol are not shown as these were investigated as alternatives to the PFP HILIC 5 cm column once it was determined that the BEH C8 and PFP HILIC 5 cm columns were the best combination.

HILIC PFP 5 cm vs HILIC HILIC

Fig. S6 Regression plots for mixture of 16 synthetic cathinones using retention time data shown in Table S1. The plots show column combinations utilizing the PFP HILIC 5 cm column as the first dimension (${ }^{1} \mathrm{D}$) and the HILIC column as the second dimension (${ }^{2} \mathrm{D}$). Plots of inverse combinations are not shown as they produce the same R2 values. Combinations with the PFP HILIC 10 cm and high pH methanol are not shown as these were investigated as alternatives to the PFP HILIC 5 cm column once it was determined that the BEH C8 and PFP HILIC 5 cm columns were the best combination.

Table S2 Retention time measurements for chromatographic columns employed in this study for the mixture of pentedrone positional isomers.

					Acquity UPLC HSS PFP
	Acquity UPLC BEH C8	Acquity UPLC BEH C18	Acquity UPLC BEH Phenyl	Acquity UPLC HSS T3	$1.8 \mu \mathrm{~m} 2.1 \times 100 \mathrm{~mm}$
	$1.7 \mu \mathrm{~m} 2.1 \times 100 \mathrm{~mm}$	$1.7 \mu \mathrm{~m} 2.1 \times 100 \mathrm{~mm}$	$1.7 \mu \mathrm{~m} 2.1 \times 100 \mathrm{~mm}$	$1.8 \mu \mathrm{~m} 2.1 \times 100 \mathrm{~mm}$	(RPC)
Compound	RT (minutes)				
Pentedrone	6.17	4.94	3.95	4.84	4.13
4-Methylethcathinone	5.61	4.56	4.25	4.52	3.98
2,3-Dimethylmethcathinone	6.46	5.45	4.74	5.26	4.13
2,4-Dimethylmethcathinone	6.83	5.92	5.10	5.67	4.54
3,4-Dimethylmethcathinone	6.71	5.79	4.96	5.55	4.40
2-Ethylmethcathinone	6.75	5.71	4.96	5.55	4.54
4-Methylbuphedrone	6.35	5.32	4.55	5.14	4.13

Table S2 cont. Retention time measurements for chromatographic columns used in this study for the mixture of pentedrone positional isomers.

	Acquity UPLC HSS PFP	Acquity UPLC HSS PFP		Acquity UPLC BEH C8
	$1.8 \mu \mathrm{~m} 2.1 \times 50 \mathrm{~mm}$	$1.8 \mu \mathrm{~m} 2.1 \times 100 \mathrm{~mm}$	Acquity UPLC BEH HILIC	$1.7 \mu \mathrm{~m} 2.1 \times 50 \mathrm{~mm}$ high
	(HILIC) ${ }^{\text {a }}$	(HILIC) ${ }^{\text {a }}$	$1.7 \mu \mathrm{~m} 2.1 \times 50 \mathrm{~mm}$	$\mathrm{pH} \mathrm{MeOH}^{\text {b }}$
Compound	RT (minutes)	RT (minutes)	RT (minutes)	RT (minutes)
Pentedrone	1.73	3.47	1.33	2.44
4-Methylethcathinone	2.28	4.34	1.53	2.44
2,3-Dimethylmethcathinone	2.21	4.23	1.62	2.26
2,4-Dimethylmethcathinone	2.47	4.64	1.66	2.57
3,4-Dimethylmethcathinone	2.47	4.64	1.66	2.44
2-Ethylmethcathinone	2.07	4.03	1.53	2.50
4-Methylbuphedrone	2.07	4.03	1.53	2.41
${ }^{\text {a }}$ All column combinations were originally investigated using the PFP HILIC 5 cm column. The PFP HILIC 10 cm column was then used for the final multi-dimensional separations in order to increase the peak capacity of the second dimension. ${ }^{\mathrm{b}}$ High pH methanol was used as the organic modifier due to solubility concerns encountered with high pH acetonitrile.				

RPC C8 vs RPC C18

RPC C8 vs RPC T3

RPC C8 vs HILIC PFP 5cm

RPC C8 vs HILIC HILIC

RPC C8 vs RPC Phenyl

RPC C8 vs RPC PFP

RPC C8 vs HILIC PFP 10 cm

RPC C8 ACN low vs RPC C8 MeOH high

Fig. $\mathbf{S 7}$ Regression plots for mixture of pentedrone positional isomers using retention time data shown in Table S 2 . The plots show column combinations utilizing the BEH C8 column as the first dimension column (${ }^{1} \mathrm{D}$) and various second dimension columns (${ }^{2} \mathrm{D}$). Combinations were first evaluated using the PFP HILIC 5 cm column. The PFP HILIC 10 cm column was used in the final multi-dimensional separations to increase peak capacity. The BEH C8 column was used in order to examine the effects of high pH elution in the second dimension. High pH methanol was used instead of high pH acetonitrile due to solubility concerns.

RPC C18 vs HILIC HILIC

Fig. $\mathbf{S 8}$ Regression plots for mixture of pentedrone positional isomers using retention time data shown in Table S2. The plots show column combinations utilizing the BEH C18 column as the first dimension column (${ }^{1} \mathrm{D}$) and various second dimension columns (${ }^{2} \mathrm{D}$). Plots of inverse combinations are not shown as they produce the same R2 values. Combinations with the PFP HILIC 10 cm and high pH methanol are not shown as these were investigated as alternatives to the PFP HILIC 5 cm column once it was determined that the BEH C8 and PFP HILIC 5 cm columns were the best combination.

RPC Phenyl vs RPC T3

RPC Phenyl vs HILIC PFP 5cm

RPC Phenyl vs RPC PFP

RPC Phenyl vs HILIC HILIC

Fig. S9 Regression plots for mixture of pentedrone positional isomers using retention time data shown in Table S2. The plots show column combinations utilizing the Phenyl column as the first dimension column (${ }^{1} \mathrm{D}$) and various second dimension columns (${ }^{2} \mathrm{D}$). Plots of inverse combinations are not shown as they produce the same R2 values. Combinations with the PFP HILIC 10 cm and high pH methanol are not shown as these were investigated as alternatives to the PFP HILIC 5 cm column once it was determined that the BEH C8 and PFP HILIC 5 cm columns were the best combination.

Fig. S10 Regression plots for mixture of pentedrone positional isomers using retention time data shown in Table S2. The plots show column combinations utilizing the T3 column as the first dimension column (${ }^{1} \mathrm{D}$) and various second dimension columns (${ }^{2} \mathrm{D}$). Plots of inverse combinations are not shown as they produce the same R2 values. Combinations with the PFP HILIC 10 cm and high pH methanol are not shown as these were investigated as alternatives to the PFP HILIC 5 cm column once it was determined that the BEH C8 and PFP HILIC 5 cm columns were the best combination.

RPC PFP vs HILIC PFP 5cm

RPC PFP vs HILIC HILIC

Fig. S11 Regression plots for mixture of pentedrone positional isomers using retention time data shown in Table S2. The plots show column combinations utilizing the RPC PFP column as the first dimension column ($\left.{ }^{1} \mathrm{D}\right)$ and various second dimension columns ($\left.{ }^{2} \mathrm{D}\right)$. Plots of inverse combinations are not shown as they produce the same R2 values. Combinations with the PFP HILIC 10 cm and high pH methanol are not shown as these were investigated as alternatives to the PFP HILIC 5 cm column once it was determined that the BEH C 8 and PFP HILIC 5 cm columns were the best combination.

HILIC PFP 5cm vs HILIC HILIC

Fig. S12 Regression plots for mixture of pentedrone positional isomers using retention time data shown in Table S2. The plots show column combinations utilizing the PFP HILIC 5 cm column as the first dimension (${ }^{1} \mathrm{D}$) and the HILIC column as the second dimension (${ }^{2} \mathrm{D}$). Plots of inverse combinations are not shown as they produce the same R2 values. Combinations with the PFP HILIC 10 cm and high pH methanol are not shown as these were investigated as alternatives to the PFP HILIC 5 cm column once it was determined that the BEH C8 and PFP HILIC 5 cm columns were the best combination.

Regression Tables of the $S^{\mathbf{2}}$ of the Column Combinations*

*selectivity was determined using the following formula $S^{2}=1-R^{2}$; See equation 1 in manuscript.
Table S3 Selectivity factors for previously plotted column combinations for the mixture of 16 synthetic cathinones. The rows of the table represent the first dimension column (${ }^{1} \mathrm{D}$) and the columns represent the second dimension column ($\left.{ }^{2} \mathrm{D}\right)$.

	C8 low pH ACN	C18	Phenyl	T3	PFP (RPC)	PFP (HILIC) 5cm ${ }^{\text {a }}$	HILIC
C8 low pH ACN	0.0000	0.0159	0.0169	0.0139	0.0011	0.6126	
C18	0.0159	0.0000	0.0039	0.0011	0.0345	0.5834	
Phenyl	0.0169	0.0039	0.0000	0.0014	0.0276	0.5557	
T3	0.0139	0.0011	0.0014	0.0000	0.0322	0.5697	
PFP (RPC)	0.0011	0.0345	0.0276	0.0322	0.0000	0.7485	
PFP (HILIC) 5cm	0.6126	0.5834	0.5557	0.5697	0.7485	0.0000	
HILIC	0.2333	0.2881	0.2729	0.2774	0.6553	0.8960	
				0.6553			
a All column combinations were initially performed using the PFP (HILIC) 5cm column.							

	C8 low pH ACN	PFP (HILIC) $10 \mathrm{~cm}^{\text {a }}$	C8 high pH MeOH ${ }^{\text {b }}$
C8 low pH ACN	0.0000	0.5268	0.1395
PFP (HILIC) 10 cm	0.5268	0.0000	N/A ${ }^{\text {c }}$
C 8 high pH MeOH	0.1395	N/A ${ }^{\text {c }}$	0.0000
${ }^{a}$ All column combinations were initially performed using the PFP (HILIC) 5 cm column. The PFP (HILIC) 10 cm column was used for the final multi-dimensional separations to increase the peak capacity of the second dimension.			
${ }^{\mathrm{b}}$ High pH methanol was used as the organic modifier due to solubility concerns encountered with high pH acetonitrile.			
${ }^{\text {c }}$ Not applicable as the the PFP (HILIC) 10 cm and high pH methanol were used to further optimize multi-dimensional separations with the C 8 low pH ACN column as the first dimension.			

Table S4 Selectivity factors for previously plotted column combinations for the mixture of pentedrone positional isomers. The rows of the table represent the first dimension column (${ }^{1} \mathrm{D}$) and the columns represent the second dimension column (${ }^{2} \mathrm{D}$).

| | C8 low pH ACN | C18 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | Phenyl | T3 | PFP (RPC) | PFP (HILIC) 5cm ${ }^{\text {a }}$ | HILIC | |
| C8 low pH ACN | 0.0000 | 0.0333 | 0.3196 | 0.0294 | 0.2116 | 0.9023 |
| C18 | 0.0333 | 0.0000 | 0.1806 | 0.0037 | 0.2197 | 0.7739 |
| Phenyl | 0.3196 | 0.1806 | 0.0000 | 0.1759 | 0.3460 | 0.4759 |
| T3 | 0.0294 | 0.0037 | 0.1759 | 0.0000 | 0.1819 | 0.7898 |
| PFP (RPC) | 0.2116 | 0.2197 | 0.3460 | 0.1819 | 0.0000 | 0.8599 |
| PFP (HILIC) 5cm | 0.9023 | 0.7739 | 0.4759 | 0.7898 | 0.8599 | 0.0000 |
| HILIC | 0.7509 | 0.5847 | 0.2658 | 0.6073 | 0.8073 | |
| | | | | 0.2317 | | |
| all column combinations were initially performed using the PFP (HILIC) 5cm column. | | | | | | |

Table S4 cont. Selectivity factors for column combinations for the mixture of pentedrone positional isomers.

	C8 low pH ACN	PFP (HILIC) $10 \mathrm{~cm}^{\text {a }}$	C 8 high $\mathrm{pH} \mathrm{MeOH}^{\text {b }}$
C8 low pH ACN	0.0000	0.8971	0.9212
PFP (HILIC) 10 cm	0.8971	0.0000	N/A ${ }^{\text {c }}$
C8 high pH MeOH	0.9212	N/A ${ }^{\text {c }}$	0.0000
${ }^{\text {a }}$ All column combinations were initially performed using the PFP (HILIC) 5 cm column. The PFP (HILIC) 10 cm column was used for the final multi-dimensional separations to increase the peak capacity of the second dimension.			
${ }^{\mathrm{b}}$ High pH methanol was used as the organic modifier due to solubility concerns encountered with high pH acetonitrile.			
${ }^{\text {c }}$ Not applicable as the the PFP (HILIC) 10 cm and high pH methanol were used to further optimize multi-dimensional separations with the C 8 low pH ACN column as the first dimension.			

One-Dimensional Peak Capacities ($\mathbf{n}_{\mathbf{c}}$) *

* calculated using the following formula $n_{c}=\left(t_{f}-t_{i}\right) / w_{a v g}$; See equation 2 in manuscript

Table S5 One-dimensional peak capacities (n_{c}) of chromatographic columns for the mixture of 16 synthetic cathinones and pentedrone positional isomers. Peak capacities are the same when the column is used as the first (peak capacity ${ }^{1} n_{c}$) or second (peak capacity ${ }^{2} n_{c}$) separation dimension.

| | | | | | | PFP (HILIC) | C8 High pH | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | C8 low pH ACN | C18 | Phenyl | T3 | PFP (RPC) | PFP (HILIC) 5cm | HILIC | 10cm |
| Synthetic Cathinones | 50.75 | 67.54 | 63.81 | 51.04 | 41.54 | 18.47 | 8.66 | 23.88 |
| Pentedrone Isomers | 8.96 | 11.94 | 13.06 | 8.48 | 4.90 | 8.77 | 5.67 | 10.75 |

Theoretical Multi-Dimensional Peak Capacities ${ }^{2 D}\left[n_{c}\right]_{\text {theory }}{ }^{*}$

* calculated using the following formula ${ }^{2 D}\left[n_{c}\right]_{t h e o r y}={ }^{1} n_{c} x^{2} n_{c}$; See equation 3 in manuscript.

Table S6 Theoretical multi-dimensional peak capacities for the mixture of 16 synthetic cathinones. The rows of the table represent the first dimension column with peak capacity ${ }^{1} n_{c}$ and the columns represent the second dimension column with peak capacity ${ }^{2} n_{c}$.

				PFP (HILIC)			
	C8 low pH ACN	C18	Phenyl	T3	PFP (RPC)	$5 \mathrm{~cm}^{\text {a }}$	
C8 low pH ACN	2575.18	3427.27	3237.91	2590.33	2108.12	937.29	439.30
C18	3427.27	2575.18	4309.28	3447.43	2805.65	1247.42	584.65
Phenyl	3237.91	4309.28	4071.20	3256.96	2650.65	1178.51	552.35
T3	2590.33	3447.43	3256.96	2605.57	2120.52	942.80	441.88
PFP (RPC)	2108.12	2805.65	2650.65	2120.52	1725.76	767.29	359.62
PFP (HILIC) 5cm	937.29	1247.42	1178.51	942.80	767.29	341.15	159.89
HILIC	439.30	584.65	552.35	441.88	359.62	159.89	74.94
a All column combinations were initially performed using the PFP (HILIC) 5 cm column.							

Table S6 cont. Theoretical multi-dimensional peak capacities
for the mixture of 16 synthetic cathinones.

		PFP (HILIC)	C8 high pH MeOH
C8 low pH ACN	2575.18	1211.85	2524.69
PFP (HILIC) 10 cm	1211.85	570.28	$\mathrm{~N} / \mathrm{A}^{\mathrm{a}}$
C8 high pH MeOH	2524.69	${\text { N } / \mathrm{A}^{a}}^{10 \mathrm{~cm}}$	2475.19

${ }^{\text {a }}$ Not applicable as the the PFP (HILIC) 10 cm and high
pH methanol were used to further optimize multi-dimensional separations with the C8 low pH ACN column as the first dimension.

Table S7 Theoretical multi-dimensional peak capacities for the mixture of pentedrone positional isomers. The rows of the table represent the first dimension column with peak capacity ${ }^{1} n_{c}$ and the first columns represent the second dimension column with peak capacity ${ }^{2} n_{c}$.

				PFP (HILIC)			
	C8 low pH ACN	C18	Phenyl	T3	PFP (RPC)	$5 \mathrm{~cm}^{\text {a }}$	
C8 low pH ACN	80.20	106.93	116.95	75.92	43.84	78.53	50.79
C18	106.93	142.57	155.94	101.23	58.45	104.70	67.72
Phenyl	116.95	155.94	170.56	110.72	63.93	114.52	74.07
T3	75.92	101.23	110.72	71.87	41.50	74.34	48.08
PFP (RPC)	43.84	58.45	63.93	41.50	23.97	42.93	27.77
PFP (HILIC) 5cm	78.53	104.70	114.52	74.34	42.93	76.89	49.73
HILIC	50.79	67.72	74.07	48.08	27.77	49.73	115.48
a All column combinations were initially performed using the PFP (HILIC) 5 cm column.							

Table S7 cont. Theoretical multi-dimensional peak capacities
for the mixture of pentedrone positional isomers

		PFP (HILIC)	
	C8 low pH ACN	10 cm	C8 high pH MeOH
C8 low pH ACN	80.20	96.24	56.55
PFP (HILIC) 10 cm	96.24	115.48	$\mathrm{~N} / \mathrm{A}^{\mathrm{a}}$
C 8 high pH MeOH	56.55	${\mathrm{~N} / \mathrm{A}^{\mathrm{a}}}$	39.87
a Not applicable as the the PFP (HILIC) 10 cm and high			
pH methanol were used to further optimize multi-dimensional			
separations with the C8 low pH ACN column as the first			
dimension.			

Assignment-Gain Factor*

* calculated using the following formula $\left[1+S^{2}\left({ }^{2} n_{c}-1\right)\right]$; See equation 5 in manuscript.

Table S8 Gain factors of column combinations for the mixture of 16 synthetic cathinones. The rows of the table represent the first dimension column ($\left.{ }^{1} \mathrm{D}\right)$ and the columns represent the second dimension column (${ }^{2} \mathrm{D}$).

	C8 low pH ACN	C18	Phenyl	T3	PFP (RPC)	PFP (HILIC) $5 \mathrm{~cm}^{\text {a }}$	HILIC
C8 low pH ACN	1.00	2.06	2.06	1.70	1.04	11.70	2.79
C18	1.79	1.00	1.24	1.06	2.40	11.19	3.21
Phenyl	1.84	1.26	1.00	1.07	2.12	10.71	3.09
T3	1.69	1.07	1.09	1.00	2.31	10.95	3.12
PFP (RPC)	1.05	3.30	2.73	2.61	1.00	14.08	6.02
PFP (HILIC) 5 cm	31.47	39.82	35.90	29.51	31.35	1.00	7.86
HILIC	12.61	20.17	18.14	14.88	27.57	16.65	1.00

Table S8 cont. Gain factors of column combinations for the mixture of 16
synthetic cathinones.

	C8 low pH ACN	PFP (HILIC) 10 cm	C8 high pH MeOH
C8 low pH ACN	1.00	13.05	7.80
PFP (HILC) 10 cm	27.21	1.00	$\mathrm{~N} / \mathrm{A}^{\mathrm{a}}$
C8 high pH MeOH	7.94	$\mathrm{~N}_{\mathrm{a}} \mathrm{A}^{\mathrm{a}}$	1.00

${ }^{\text {a }}$ Not applicable as the the PFP (HILIC) 10 cm and high pH methanol were used to further optimize multi-dimensional separations with the C 8 low pH ACN column as the first dimension.

Table S9 Gain factors of column combinations for the mixture of pentedrone positional isomers. The rows of the table represent the first dimension column (${ }^{1} \mathrm{D}$) and the columns represent the second dimension column (${ }^{2} \mathrm{D}$).

	C8 low pH ACN	C18	Phenyl	T3	PFP (RPC)	PFP (HILIC) 5cm ${ }^{\text {a }}$	HILIC
C8 low pH ACN	1.00	1.36	4.85	1.22	1.82	8.01	4.51
C18	1.26	1.00	3.18	1.03	1.86	7.01	3.73
Phenyl	3.54	2.98	1.00	2.32	2.35	4.70	2.24
T3	1.23	1.04	3.12	1.00	1.71	7.14	3.84
PFP (RPC)	2.68	3.40	5.17	2.36	1.00	7.68	4.77
PFP (HILIC) 5cm	8.18	9.47	6.74	6.91	4.35	1.00	2.80
HILIC	6.97	7.40	4.21	5.54	4.14	1.00	
a All column combinations were initially performed using the PFP (HILIC) 5cm column.							

Table S9 cont. Gain factors of column combinations for the mixture of pentedrone positional isomers

	C8 low pH ACN	PFP (HILIC) 10 cm	C 8 high pH MeOH
C8 low pH ACN	1.00	9.74	5.90
PFP (HILIC) 10 cm	8.14	1.00	N/A ${ }^{\text {a }}$
$\mathrm{C8}$ high pH MeOH	8.33	$\mathrm{N} / \mathrm{A}^{\text {a }}$	1.00
${ }^{\text {a }}$ Not applicable as the the PFP (HILIC) 10 cm and high pH methanol were used to further optimize multi-dimensional separations with the C low pH ACN column as the first dimension.			

Actual Multi-Dimensional Peak Capacities ${ }^{2 D}\left[n_{c}\right]_{\text {actual }}{ }^{*}$
 * calculated using the following formula ${ }^{2 D}\left[n_{c}\right]_{\text {actual }}={ }^{1} n_{c}\left[1+S^{2}\left({ }^{2} n_{c}-1\right)\right]$; See equation 5 in manuscript.

Table S10 Actual multi-dimensional peak capacities for the mixture of 16 synthetic cathinones. The rows of the table represent the first dimension column with peak capacity ${ }^{1} n_{c}$ and the columns represent the second dimension column with peak capacity ${ }^{2} n_{c}$.

	C8 low pH ACN	C18	Phenyl	T3	PFP (RPC)	PFP (HILIC) $5 \mathrm{~cm}{ }^{\text {a }}$	HILIC
C8 low pH ACN	50.75	104.43	104.61	86.05	53.01	593.84	141.39
C18	120.96	67.54	84.08	71.26	162.00	755.88	216.52
Phenyl	117.45	80.36	63.81	68.28	135.20	683.24	197.13
T3	86.34	54.78	553	51.53	117.68	559.08	159.46
PFP (RPC)	43.82	136.90	13.55	108.49	41.54	584.76	249.99
PFP (HILIC) 5cm	581.34	735.44	663.10	545.06	578.96	18.47	145.18
HILIC	109.12	174.60	157.03	128.83	238.65	144.16	8.66
a All column combinations were initially performed using the PFP (HILIC) 5cm column.							

Table S10 cont. Actual multi-dimensional peak capacities for the mixture of 16 synthetic cathinones.

	C8 low pH ACN	PFP (HILIC) 10 cm	C8 high pH MeOH
C8 low pH ACN	50.75	662.42	395.86
PFP (HILIC) 10 cm	649.70	23.88	$\mathrm{~N} / \mathrm{A}^{\text {a }}$
C8 high pH MeOH	395.01	${\mathrm{~N} / \mathrm{A}^{\text {a }}}$	49.75

${ }^{\text {a }}$ Not applicable as the the PFP (HILIC) 10 cm and high pH methanol were
used to further optimize multi-dimensional separations with the CB low pH ACN column as the first dimension.

Table S11 Actual multi-dimensional peak capacities for the mixture of pentedrone positional isomers. The rows of the table represent the first dimension column (${ }^{1} \mathrm{D}$) and the columns represent the second dimension column (${ }^{2} \mathrm{D}$).

	C8 low pH ACN	C18	Phenyl	T3	PFP (RPC)	PFP (HILIC) $5 \mathrm{~cm}^{\text {a }}$	HILIC
C8 low pH ACN	8.96	12.22	43.47	10.92	16.34	71.73	40.37
C18	15.10	11.94	37.95	12.27	22.16	83.73	44.56
Phenyl	46.26	38.86	13.06	30.24	30.66	61.34	29.28
T3	10.46	8.82	26.46	8.48	14.48	60.49	32.53
PFP (RPC)	13.14	16.66	25.32	11.55	4.90	37.60	23.33
PFP (HILIC) 5cm	71.71	83.01	59.09	60.55	38.14	8.77	18.26
HILIC	39.55	41.95	23.85	31.43	23.48	15.88	5.67

Table S11 cont. Actual multi-dimensional peak capacities for the mixture of pentedrone positional isomers.

	C8 low pH ACN	PFP (HILIC) 10 cm	C8 high pH MeOH
C8 low pH ACN	8.96	87.25	52.80
PFP (HILIC) 10 cm	87.44	10.75	$\mathrm{~N} / \mathrm{A}^{\mathrm{a}}$
C8 high pH MeOH	52.59	$\mathrm{~N}_{\mathrm{a}} \mathrm{A}^{\mathrm{a}}$	6.31

[^0]
[^0]: ${ }^{\text {a }}$ Not applicable as the the PFP (HILIC) 10 cm and high pH methanol were used to further optimize multi-dimensional separations with the C 8 low pH ACN column as the first dimension.

