Supporting Information

Determination of Cu²⁺ and biothiols by the novel red fluorescent hybrid nanoparticles

Ling Zhang^a, Zizhun Wang^a, Jiaze Hou^a, Lulu Lei^a, Jiao Li^a, Juan Bai^a, Hui Huang^{a*}, Yongxin Li^b

^aCollege of Food Science and Engineering, Jilin University, Changchun 130025, China.
^bState Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

*Corresponding author. Tel.: +86-431-85094968 E-mail address: huanghui@jlu.edu.cn

Fig. S1. DLS distribution of the NPG@PFBD nanoparticles.

Fig. S2. Stability of the NPG@PFBD nanoparticles. (a) fluorescence intensity of new synthetic sample, fluorescence intensity of the same sample after 10 days. (b) photobleaching curves of NPG@PFBD nanoparticles.

Fig. S3. The relationship between the fluorescence intensity of the NPG@PFBD nanoparticles and the reaction time in the presence of 50 μ M Cu²⁺ and 50 μ M GSH.

Fig. S4. The relationship between the Er and pH in the presence of NPG@PFBD nanoparticles and 50 μ M Cu²⁺ and 50 μ M GSH.

Fig. S5. The relationship between the Er and reaction temperature in the presence of NPG@PFBD nanoparticles and 50 μ M Cu²⁺ and 50 μ M GSH.