Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2018

Electronic Supporting Information for

Detection of Bisphenol A and Derivatives in Human Urine via Cyclodextrin-Promoted Fluorescence Modulation

Dana J. DiScenza, Julie Lynch, Ezra Feder, and Mindy Levine

TABLE OF CONTENTS

Analyte Details	S3
Summary Tables	S4
Summary Tables for Fluorescence Modulation Experiments	S4
Summary Tables for Limit of Detection Experiments	S6
Summary Tables for Array Generation Experiments	S7
Summary Tables for GC-MS Characterization Experiments	S8
Summary Tables for Mixture Fluorescence Modulation Experiments	S9
Summaey Tables for Mixture Array Generation Experiments	S10
Summary Tables for Binding Constant Measurements	S11
Summary Figures	S12
Summary Figures for Fluorescence Modulation Experiments	S12
Summary Figures for Limit of Detection Experiments	S18
Summary Figures for Array Generation Experiments	S25
Summary Figures for GC-MS Characterization	
Summary Figures for Mixture Fluorescence Modulation Experiments	S42
Summary Figures for Mixture Array Generation Experiments	S46
Summary Figures for Electrostatic Potential Mapping	S47
Summary Figures for Fluorophores 9-11 Fluorescence Emission Spectra	
Summary Figures for Binding Constant Measurements	

ANALYTE DETAILS

Figure S1: Structures of analytes 1-7, control analyte 8, and fluorophores 9-11

Table	S1:	Final	solution	concentrations	of analytes	and flu	orophores
					~		1

Compound	Volume Added (µL)	Final Concentration (µM)
1	50	84.24
2	50	79.36
3	50	96.04
4	50	76.84
5	50	57.19
6	50	66.23
7	50	54.57
8	50	266.7
9	100	14.67
10	100	10.11
11	100	10.98

SUMMARY TABLES

SUMMARY TABLES FOR FLUORESCENCE MODULATION EXPERIMENTS

Buffer

Analyte	Fluorophore	Fluorescence Modulation
	9	1.19 ± 0.01
1	10	1.03 ± 0.002
	11	1.06 ± 0.004
	9	1.20 ± 0.001
2	10	0.86 ± 0.01
	11	1.08 ± 0.01
	9	1.68 ± 0.01
3	10	0.68 ± 0.01
	11	1.07 ± 0.01
4	9	1.19 ± 0.004
	10	0.84 ± 0.003
	11	1.07 ± 0.002
	9	1.18 ± 0.002
5	10	0.83 ± 0.004
	11	1.07 ± 0.003
	9	1.19 ± 0.01
6	10	0.84 ± 0.01
	11	1.07 ± 0.003
	9	1.18 ± 0.01
7	10	0.81 ± 0.01
	11	1.09 ± 0.004
	9	1.17 ± 0.01
8	10	1.03 ± 0.01
	11	1.09 ± 0.01

Table S2: Fluorescence modulation results for each analyte in buffer

Urine

Analyte	Fluorophore	Fluorescence Modulation
	9	1.36 ± 0.02
1	10	1.03 ± 0.002
	11	1.08 ± 0.004
	9	1.36 ± 0.02
2	10	0.95 ± 0.001
	11	1.08 ± 0.01
	9	1.85 ± 0.01
3	10	0.92 ± 0.01
	11	1.08 ± 0.004
	9	1.34 ± 0.01
4	10	0.92 ± 0.01
	11	1.08 ± 0.004
	9	1.38 ± 0.01
5	10	0.94 ± 0.01
	11	1.07 ± 0.004
	9	1.39 ± 0.01
6	10	0.99 ± 0.01
	11	1.05 ± 0.01
	9	1.36 ± 0.01
7	10	0.90 ± 0.004
	11	1.08 ± 0.01
	9	1.32 ± 0.003
8	10	1.09 ± 0.01
	11	1.08 ± 0.004

 Table S3: Fluorescence modulation results for each analyte in urine

SUMMARY TABLES FOR LIMIT OF DETECTION EXPERIMENTS

Buffer

Analyte	Fluorophore	Equation	R ²	LOD (µM)
1	9	y = 0.0026x + 1.0307	0.9998	6.61 ± 0.21
2	9	y = 0.0027x + 1.0177	0.99763	0.57 ± 0.01
3	9	y = 0.007x + 0.8928	0.99774	0.049 ± 0.00
4	9	y = 0.0032x + 1.0078	0.99905	1.16 ± 0.00
5	9	y = 0.0037x + 1.0299	0.99671	1.18 ± 0.02
6	9	y = 0.0037x + 0.9999	0.99822	1.70 ± 0.06
7	9	y = 0.0044x + 0.9972	0.99802	1.11 ± 0.03

Table S4: Limits of detection for analytes with fluorophore 9 in buffer

Urine

 Table S5: Limits of detection for analytes with fluorophore 9 in urine

Analyte	Fluorophore	Equation	R ²	LOD (µM)
1	9	y = 0.0043x + 1.0826	0.99573	7.96 ± 0.11
2	9	y = 0.0044x + 0.9991	0.99798	9.50 ± 0.13
3	9	y = 0.009x + 0.9322	0.99197	2.01 ± 0.06
4	9	y = 0.0042x + 0.9673	0.9969	2.29 ± 0.00
5	9	y = 0.0049x + 1.0074	0.99773	2.50 ± 0.03
6	9	y = 0.0042x + 1.016	0.99108	9.66 ± 0.13
7	9	y = 0.0043x + 1.0434	0.9815	0.79 ± 0.02

SUMMARY TABLES FOR ARRAY GENERATION EXPERIMENTS

Buffer

Table S6: Results of array generation in buffer

Jackknifed Classification Matrix

	Analyte 1	Analyte 2	Analyte 3	Analyte 4	Analyte 5	Analyte 6	Analyte 7	Analyte 8	%correct
Analyte 1	4	0	0	0	0	0	0	0	100
Analyte 2	0	4	0	0	0	0	0	0	100
Analyte 3	0	0	4	0	0	0	0	0	100
Analyte 4	0	0	0	4	0	0	0	0	100
Analyte 5	0	0	0	0	4	0	0	0	100
Analyte 6	0	0	0	0	0	4	0	0	100
Analyte 7	0	0	0	0	0	0	4	0	100
Analyte 8	0	0	0	0	0	0	0	4	100
Total	4	4	4	4	4	4	4	4	100

Cumulative Proportion of Total Dispersion

0.925	0.988	1.000

Urine

Table S7: Results of array generation in urine

Jackknifed Classification Matrix

-	Analyte 1	Analyte 2	Analyte 3	Analyte 4	Analyte 5	Analyte 6	Analyte 7	Analyte 8	%correct
Analyte 1	4	0	0	0	0	0	0	0	100
Analyte 2	0	4	0	0	0	0	0	0	100
Analyte 3	0	0	4	0	0	0	0	0	100
Analyte 4	0	0	0	4	0	0	0	0	100
Analyte 5	0	0	0	0	4	0	0	0	100
Analyte 6	0	0	0	0	0	4	0	0	100
Analyte 7	0	0	0	0	0	0	4	0	100
Analyte 8	0	0	0	0	0	0	0	4	100
Total	4	4	4	4	4	4	4	4	100

Cumulative Proportion of Total Dispersion

0.810	0.994	1.000

SUMMARY TABLES FOR GC-MS CHARACTERIZATION

Table S8: GC-MS results for urine

Time (min)	NIST Compound ID
10	6-methyl-3-cyclohexen-1-carboxaldehyde
10.25	2,4,4-Trimethyl-1-hexene
12	2-Methylbenzoxazol
12.4	Dehydromevalonic lactone
12.5	1-methyl-2-piperidinone
12.6	Dodecane
12.8	Mannosamine
13.1	1-Butyrylpyrrolidine
13.25	Carbonic acid, eicosyl prop-e-en-2-yl ester
13.3	2-Isopopyl-5-methyl-1-hexanol
13.45	11-Methyldodecanol
13.5	1,4-Diethylhexyl dichloroacetate
13.55	Dodecyl nonyl ether
13.65	2,4-Dimethylheptane
13.7	2,3,5-Trimethyldecane
13.75	3,8-Dimethyldecane
13.85	Tetradecane
13.95	Propanoic acid, 2-methyl-, 3-hydroxy-2,2,4-trimethylpentyl ester
15	Hexadecane
15.1	Acetaminophen
15.2	Cyclohexyl laurate
15.4	Benzophenone
15.6	2-hexyldecanol
16	3,7,11,15-Tetramethyl-2-hexadecene
16.15	2-Methylhexacosane
16.25	1-(15-Methylhexadecanoyl)pyrrolidine
18.3	Bis(tridecyl) phthalate
18.4	5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6H-dipyrrolo[1,2-a:1',2'-d]pyrazine
18.5	Dodecanamide
22.8	Hexadecanamide
29.5	9-Octadecenamide
44	Diisooctyl phthalate

SUMMARY TABLE FOR MIXTURE FLUORESCENCE MODULATION EXPERIMENTS

Analyte	Analyte	Fluorophore 9	Fluorophore 10	Fluorophore 11	
1	2	1.06 ± 0.05	1.11 ± 0.004	1.07 ± 0.002	
1	3	1.12 ± 0.05	1.10 ± 0.004	1.09 ± 0.0003	
1	4	1.10 ± 0.03	1.09 ± 0.01	1.06 ± 0.003	
1	5	1.02 ± 0.08	1.09 ± 0.01	1.07 ± 0.002	
1	6	1.07 ± 0.02	1.10 ± 0.001	1.05 ± 0.003	
1	7	1.03 ± 0.05	1.07 ± 0.002	1.05 ± 0.004	
2	3	1.00 ± 0.09	1.12 ± 0.002	1.08 ± 0.001	
3	4	1.07 ± 0.07	1.09 ± 0.01	1.08 ± 0.004	
3	5	1.03 ± 0.08	1.10 ± 0.01	1.08 ± 0.01	
6	7	0.99 ± 0.07	1.08 ± 0.002	1.06 ± 0.003	

Table S9: Fluorescence modulation results for analyte mixtures in urine

SUMMARY TABLES FOR MIXTURE ARRAY GENERATION EXPERIMENTS

Table S10: Results of array generation for analytes mixtures in urine

Jackknifed Classification Matrix

	Analytes 1 and	Analytes 2 and					
	2	3	4	5	6	7	3
Analytes 1 and 2	4	0	0	0	0	0	0
Analytes 1 and 3	0	4	0	0	0	0	0
Analytes 1 and 4	0	0	4	0	0	0	0
Analytes 1 and 5	0	0	0	4	0	0	0
Analytes 1 and 6	0	0	0	0	4	0	0
Analytes 1 and 7	0	0	0	0	0	4	0
Analytes 2 and 3	0	0	0	0	0	0	4
Analytes 3 and 4	0	0	0	0	0	0	0
Analytes 3 and 5	0	0	0	0	0	0	0
Analytes 6 and 7	0	0	0	0	0	0	0
Total	4	4	4	4	4	4	4

Jackknifed Classification Matrix (Contd.)

	Analytes 3 and	Analytes 3 and	Analytes 6 and	%correct
	4	5	7	
Analytes 1 and 2	0	0	0	100
Analytes 1 and 3	0	0	0	100
Analytes 1 and 4	0	0	0	100
Analytes 1 and 5	0	0	0	100
Analytes 1 and 6	0	0	0	100
Analytes 1 and 7	0	0	0	100
Analytes 2 and 3	0	0	0	100
Analytes 3 and 4	4	0	0	100
Analytes 3 and 5	0	4	0	100
Analytes 6 and 7	0	0	4	100
Total	4	4	4	100

1.000

Cumulative Proportion of Total Dispersion

0.766 0.998

SUMMARY TABLE FOR BINDING CONSTANT MEASUREMENTS

Analyte	Concentration (M)	$\lambda_{max}(nm)$	Equation	\mathbf{R}^2	$K_a (M^{-1})$
1	1.01×10^{-4}	284	y = 0.0005x + 11.906	0.9586	$3.22 \text{ x } 10^4 \pm 6.81 \text{ x } 10^3$
2	1.02×10^{-4}	285	y = 0.0005x + 11.473	0.9595	$2.37 \text{ x } 10^4 \pm 2.72 \text{ x } 10^3$
3	5.18 x 10 ⁻⁵	286	y = 0.0003x + 7.7833	0.9861	$1.39 \ge 10^4 \pm 1.15 \ge 10^4$
4	5.07 x 10 ⁻⁵	297	y = 0.0005x + 9.9003	0.901	$1.79 \ge 10^4 \pm 1.98 \ge 10^3$
5	5.15 x 10 ⁻⁵	280	y = 0.0001 + 11.405	0.9471	$7.83 \text{ x } 10^4 \pm 1.97 \text{ x } 10^3$
6	5.30 x 10 ⁻⁵	287	y = 0.0002x + 9.1613	0.9414	$5.99 \ge 10^4 \pm 3.83 \ge 10^3$
7	5.02 x 10 ⁻⁶	250	y = 00003x + 3.4255	0.9553	$1.06 \ge 10^5 \pm 9.27 \ge 10^2$

Table S11: UV/Visible spectroscopy binding constants for analytes 1-7 with γ -cyclodextrin

SUMMARY FIGURES

SUMMARY FIGURES FOR FLUORESCENCE MODULATION EXPERIMENTS

The black line represents the emission from the fluorophore, and the red line represents the emission from the analyte and fluorophore mixed together in buffer or urine. All X-axes measure the emission from 470 nm to 800 nm, and all Y-axes have been normalized so that the fluorescence emission is on a scale of 0.0 to 1.0.

Buffer

Analyte 1

Figure S2: Fluorescence modulation of analyte 1 in buffer

Figure S3: Fluorescence modulation of analyte 2 in buffer

Figure S4: Fluorescence modulation of analyte 3 in buffer

Figure S5: Fluorescence modulation of analyte 4 in buffer

Figure S6: Fluorescence modulation of analyte 5 in buffer

Analyte 6

Figure S7: Fluorescence modulation of analyte 6 in buffer

Analyte 7

Figure S8: Fluorescence modulation of analyte 7 in buffer

Figure S9: Fluorescence modulation of control analyte 8 in buffer

Urine Experiments

Figure S10: Fluorescence modulation of analyte 1 in urine

Analyte 2

Figure S11: Fluorescence modulation of analyte 2 in urine

Figure S12: Fluorescence modulation of analyte 3 in urine

Figure S13: Fluorescence modulation of analyte 4 in urine

Analyte 5

Figure S14: Fluorescence modulation of analyte 5 in urine

Figure S15: Fluorescence modulation of analyte 5 in urine

Figure S16: Fluorescence modulation of analyte 7 in urine

Figure S17: Fluorescence modulation of control analyte 8 in urine

SUMMARY FIGURES FOR LIMIT OF DETECTION EXPERIMENTS

Limits of detection were calculated following literature-reported procedures:

Cheng, D.; Zhao, W.; Yang, H.; Huang, Z.; Liu, X.; Han, A. Detection of Hg2+ by a FRET ratiometric fluorescent probe based on a novel BODIPY-RhB system. *Tetrahedron Lett.* **2016**, *57*, 2655-2659.

We plotted the ratio of $Fl_{analyte}/Fl_{blank}$ on the Y-axis, and the analyte concentration in micromolar on the X-axis.

Buffer

Analyte 1- Fluorophore 9

Figure S18: Limit of detection for analyte 1 in buffer Analyte 2- Fluorophore 9

Figure S19: Limit of detection for analyte 2 in buffer

Analyte 3- Fluorophore 9

Figure S20: Limit of detection for analyte 3 in buffer Analyte 4- Fluorophore 9

Figure S21: Limit of detection for analyte 4 in buffer

Analyte 5- Fluorophore 9

Figure S22: Limit of detection for analyte 5 in buffer Analyte 6- Fluorophore 9

Figure S23: Limit of detection for analyte 6 in buffer

Analyte 7- Fluorophore 9

Figure S24: Limit of detection for analyte 7 in buffer Urine

Analyte 1- Fluorophore 9

Figure S25: Limit of detection for analyte 1 in urine

Analyte 2- Fluorophore 9

Figure S26: Limit of detection for analyte 2 in urine Analyte 3- Fluorophore 9

Figure S27: Limit of detection for analyte 3 in urine

Analyte 4- Fluorophore 9

Figure S28: Limit of detection for analyte 4 in urine Analyte 5- Fluorophore 9

Figure S29: Limit of detection for analyte 5 in urine

Analyte 6- Fluorophore 9

Figure S30: Limit of detection for analyte 6 in urine Analyte 7- Fluorophore 9

Figure S31: Limit of detection for analyte 7 in urine

SUMMARY FIGURES FOR ARRAY GENERATION EXPERIMENTS

Results from linear discriminant analyses of the fluorescence responses were plotted with SCORE (1) values on the X-axis and SCORE (2) values on the Y-axis.

Buffer

Figure S32: Linear discriminant analysis of fluorescence responses for analytes 1-8 with fluorophores 9-11 in buffer

Urine

Figure S33: Linear discriminant analysis of fluorescence responses for analytes 1-8 with fluorophores 9-11 in urine

SUMMARY FIGURES FOR GC-MS CHARACTERIZATION

An undoped urine sample was run on the GC-MS, and results and compound identification of those experiments are shown below:

Urine – Undoped Sample – 10 min

Figure S34: GC-MS trace for urine for undoped sample at 10 minutes

NIST compound ID: 6-methyl-3-cyclohexen-1-carboxaldehyde

Urine – Undoped Sample – 10.25 min

Figure S35: GC-MS trace for urine for undoped sample at 10.25 minutes **NIST compound ID:** 2,4,4-Trimethyl-1-hexene

Urine – Undoped Sample – 12 min

Figure S36: GC-MS trace for urine for undoped sample at 12 minutes

NIST compound ID: 2-Methylbenzoxazol

Urine – Undoped Sample – 12.4 min

Figure S37: GC-MS trace for urine for undoped sample at 12.4 minutes **NIST compound ID:** Dehydromevalonic lactone

Urine – Undoped Sample – 12.5 min

Figure S38: GC-MS trace for urine for undoped sample at 12.5 minutes

NIST compound ID: 1-methyl-2-piperidinone

Urine – Undoped Sample – 12.6 min

Figure S39: GC-MS trace for urine for undoped sample at 12.6 minutes **NIST compound ID:** Dodecane

Urine – Undoped Sample – 12.8 min

Figure S40: GC-MS trace for urine for undoped sample at 12.8 minutes

NIST compound ID: Mannosamine

Urine - Undoped Sample - 13.1 min

Figure S41: GC-MS trace for urine for undoped sample at 13.1 minutes **NIST compound ID:** 1-Butyrylpyrrolidine

Urine – Undoped Sample – 13.25 min

Figure S42: GC-MS trace for urine for undoped sample at 13.25 minutes **NIST compound ID:** Carbonic acid, eicosyl prop-e-en-2-yl ester

Urine – Undoped Sample – 13.3 min

Figure S43: GC-MS trace for urine for undoped sample at 13.3 minutes **NIST compound ID:** 2-Isopopyl-5-methyl-1-hexanol

Urine - Undoped Sample - 13.45 min

Figure S44: GC-MS trace for urine for undoped sample at 13.45 minutes

NIST compound ID: 11-Methyldodecanol

Urine – Undoped Sample – 13.5 min

Figure S45: GC-MS trace for urine for undoped sample at 13.5 minutes **NIST compound ID:** 1,4-Diethylhexyl dichloroacetate

Urine – Undoped Sample – 13.55 min

Figure S46: GC-MS trace for urine for undoped sample at 13.55 minutes

NIST compound ID: Dodecyl nonyl ether

Urine – Undoped Sample – 13.65 min

Figure S47: GC-MS trace for urine for undoped sample at 13.65 minutes **NIST compound ID:** 2,4-Dimethylheptane

Urine – Undoped Sample – 13.7 min

Figure S48: GC-MS trace for urine for undoped sample at 13.7 minutes

NIST compound ID: 2,3,5-Trimethyldecane

Urine – Undoped Sample – 13.75 min

Figure S49: GC-MS trace for urine for undoped sample at 13.75 minutes **NIST compound ID:** 3,8-Dimethyldecane

Urine - Undoped Sample - 13.85 min

Figure S50: GC-MS trace for urine for undoped sample at 13.85 minutes

NIST compound ID: Tetradecane

Urine – Undoped Sample – 13.95 min

Figure S51: GC-MS trace for urine for undoped sample at 13.95 minutes **NIST compound ID:** Propanoic acid, 2-methyl-, 3-hydroxy-2,2,4-trimethylpentyl ester

Urine – Undoped Sample – 15 min

Figure S52: GC-MS trace for urine for undoped sample at 15 minutes

NIST compound ID: Hexadecane

Urine - Undoped Sample - 15.1 min

Figure S53: GC-MS trace for urine for undoped sample at 15.1 minutes **NIST compound ID:** Acetaminophen

Urine – Undoped Sample – 15.2 min

Figure S54: GC-MS trace for urine for undoped sample at 15.2 minutes

NIST compound ID: Cyclohexyl laurate

Urine - Undoped Sample - 15.4 min

Figure S55: GC-MS trace for urine for undoped sample at 15.4 minutes **NIST compound ID:** Benzophenone

Urine – Undoped Sample – 15.6 min

Figure S56: GC-MS trace for urine for undoped sample at 15.6 minutes **NIST compound ID:** 2-hexyldecanol

Urine – Undoped Sample – 16 min

Figure S57: GC-MS trace for urine for undoped sample at 16 minutes **NIST compound ID:** 3,7,11,15-Tetramethyl-2-hexadecene

Urine – Undoped Sample – 16.15 min

Figure S58: GC-MS trace for urine for undoped sample at 16.15 minutes

NIST compound ID: 2-Methylhexacosane

Urine – Undoped Sample – 16.25 min

Figure S59: GC-MS trace for urine for undoped sample at 16.25 minutes **NIST compound ID:** 1-(15-Methylhexadecanoyl)pyrrolidine

Urine - Undoped Sample - 18.3 min

Figure S60: GC-MS trace for urine for undoped sample at 18.3 minutes

NIST compound ID: Bis(tridecyl) phthalate

Urine – Undoped Sample – 18.4 min

Figure S61: GC-MS trace for urine for undoped sample at 18.4 minutes **NIST compound ID:** 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6H-dipyrrolo[1,2-a:1',2'-d]pyrazine

Urine – Undoped Sample – 18.5 min

Figure S62: GC-MS trace for urine for undoped sample at 18.5 minutes

NIST compound ID: Dodecanamide

Urine – Undoped Sample – 22.8 min

Figure S63: GC-MS trace for urine for undoped sample at 22.8 minutes **NIST compound ID:** Hexadecanamide

Urine – Undoped Sample – 29.5 min

Figure S64: GC-MS trace for urine for undoped sample at 29.5 minutes

NIST compound ID: 9-Octadecenamide

Urine – Undoped Sample – 44 min

Figure S65: GC-MS trace for urine for undoped sample at 44 minutes **NIST compound ID:** Diisooctyl phthalate

SUMMARY FIGURES FOR MIXTURE FLUORESCENCE MODULATION EXPERIMENTS

The black line represents the emission from the fluorophore, and the red line represents the emission from the 1:1 binary analyte mixtures and the fluorophore mixed together in urine. All X-axes measure the emission from 470 nm to 800 nm, and all Y-axes have been normalized so that the fluorescence emission is on a scale of 0.0 to 1.0.

Figure S66: Fluorescence modulation of fluorophores 9-11 with analytes 1 and 2 in urine

Figure S67: Fluorescence modulation of fluorophores 9-11 with analytes 1 and 3 in urine Analyte 1 – Analyte 4

Figure S68: Fluorescence modulation of fluorophores 9-11 with analytes 1 and 4 in urine

Analyte 1 - Analyte 5

Figure S69: Fluorescence modulation of fluorophores 9-11 with analytes 1 and 5 in urine Analyte 1 – Analyte 6

Figure S70: Fluorescence modulation of fluorophores 9-11 with analytes 1 and 6 in urine Analyte 1 – Analyte 7

Figure S71: Fluorescence modulation of fluorophores 9-11 with analytes 1 and 7 in urine

Analyte 2 -Analyte 3

Figure S72: Fluorescence modulation of fluorophores 9-11 with analytes 2 and 3 in urine Analyte 3 – Analyte 4

Figure S73: Fluorescence modulation of fluorophores 9-11 with analytes 3 and 4 in urine Analyte 3 – Analyte 5

Figure S74: Fluorescence modulation of fluorophores 9-11 with analytes 3 and 5 in urine

Analyte 6 – Analyte 7

Figure S75: Fluorescence modulation of fluorophores 9-11 with analytes 6 and 7 in urine

SUMMARY FIGURES FOR MIXTURE ARRAY GENERATION EXPERIMENTS

Results from linear discriminant analyses of the fluorescence responses of binary analyte mixtures were plotted with SCORE (1) values on the X-axis and SCORE (2) values on the Y-axis.

Urine

Figure S76: Linear discriminant analysis of fluorescence responses for analytes mixtures with fluorophores 9-11 in urine

SUMMARY FIGURES FOR ELECTROSTATIC POTENTIAL MAPPING

All conformations shown were energy-minimized using Spartan 16 software. The red areas represent electron-rich regions and the blue areas represent electron-deficient regions.

Analyte 1

Figure S77: Electrostatic potential map of analyte 1

Analyte 2

Figure S78: Electrostatic potential map of analyte 2

Figure S79: Electrostatic potential map of analyte 3

Figure S80: Electrostatic potential map of analyte 4

Analyte 5

Figure S81: Electrostatic potential map of analyte 5 Analyte 6

Figure S82: Electrostatic potential map of analyte 6

Analyte 7

Figure S83: Electrostatic potential map of analyte 7

Analyte 8

Figure S84: Electrostatic potential map of analyte 8

Fluorophore 9

Figure S85: Electrostatic potential map of fluorophore 9

Fluorophore 10

Figure S86: Electrostatic potential map of fluorophore 10 Fluorophore 11

Figure S87: Electrostatic potential map of fluorophore 11

SUMMARY FIGURES FOR FLUOROPHORES 9-11 FLUORESCENCE EMISSION SPECTRA

The black line represents the emission from the fluorophore in the absence of cyclodextrin, and the red line represents the emission from the fluorophore in the presence of cyclodextrin in buffer or urine. All X-axes measure the emission from 470 nm to 800 nm, and all Y-axes have been normalized so that the fluorescence emission is on a scale of 0.0 to 1.0.

Buffer

Fluorophore 9

Figure S88: Fluorescence emission of fluorophore 9 in the absence and presence of cyclodextrin in buffer Fluorophore 10

Figure S89: Fluorescence emission of fluorophore 10 in the absence and presence of cyclodextrin in buffer

Fluorophore 11

Figure S90: Fluorescence emission of fluorophore 11 in the absence and presence of cyclodextrin in buffer

Urine

Fluorophore 9

Figure S91: Fluorescence emission of fluorophore 9 in the absence and presence of cyclodextrin in urine

Fluorophore 10

Figure S92: Fluorescence emission of fluorophore 10 in the absence and presence of cyclodextrin in urine

Fluorophore 11

Figure S93: Fluorescence emission of fluorophore 11 in the absence and presence of cyclodextrin in urine

SUMMARY FIGURES FOR BINDING CONSTANT EXPERIMENTS

Binding constants were calculated via UV/Visible spectroscopy following literature-reported procedures:

Tomiyasu, H.; Zhao, J. L.; Ni, X. L.; Zeng, X.; Elsegood, M. R. J.; Jones, B.; Redshaw, C.; Teat, S. J.; Yamato, T. Positive and negative allosteric effects of thiocalix[4]arene-based receptors having urea and crown ether moieties. *RSC Advances* **2015**, *5*, 14747-14755.

Figures represent double reciprocal Benesi-Hildebrand plots with the reciprocal change in absorbance $(1/\Delta A)$ on the Y-axis, and reciprocal γ -cyclodextrin concentration (1/[CD]) on the X-axis.

Figure S94: Double reciprocal Benesi-Hildebrand plot for analyte 1 with γ -cyclodextrin Analyte 2 – γ -cyclodextrin

Figure S95: Double reciprocal Benesi-Hildebrand plot for analyte 2 with γ -cyclodextrin

Figure S96: Double reciprocal Benesi-Hildebrand plot for analyte 3 with γ -cyclodextrin Analyte 4 – γ -cyclodextrin

Figure S97: Double reciprocal Benesi-Hildebrand plot for analyte 4 with γ -cyclodextrin

Figure S98: Double reciprocal Benesi-Hildebrand plot for analyte 5 with γ -cyclodextrin

Figure S99: Double reciprocal Benesi-Hildebrand plot for analyte 6 with γ -cyclodextrin

Figure S100: Double reciprocal Benesi-Hildebrand plot for analyte 7 with γ -cyclodextrin