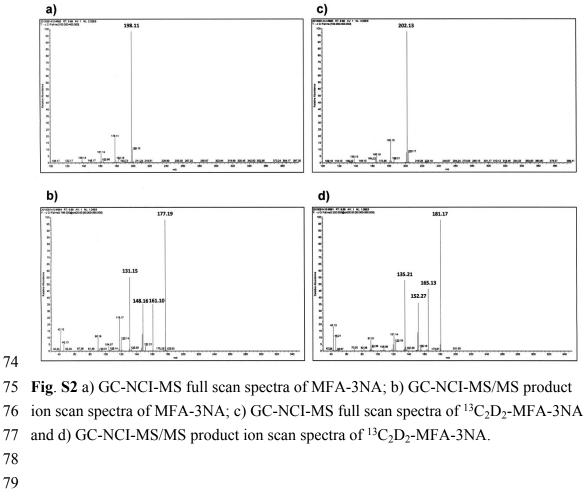
1 Analytical Methods **3 Electronic Supplementary Information** 6 Ultra-trace determination of sodium fluoroacetate (1080) as 7 monofluoroacetate in milk and milk powder by GC-MS/MS and LC-8 MS/MS 10 Yiu-Tung Wong*, Wing-Ki Law, Shirley Sau-Ling Lai, Siu-Pan Wong, Kong-Chi 11 Lau and Clare Ho 14 Analytical and Advisory Services Division, Government Laboratory, 15 7/F, Ho Man Tin Government Offices, Ho Man Tin, Kowloon, 16 Hong Kong Special Administrative Region, China 18 *Corresponding author: Dr. Yiu-Tung Wong, Tel.:+852 27623833 19 E-mail address: ytwong@govtlab.gov.hk

$ \begin{array}{c} O \\ \parallel \\ F \\ H_B \\ H_A \\ \end{array} \begin{array}{c} O \\ C_A \\ O \\ H_A \\ \end{array} \begin{array}{c} \odot \\ O \\ X \\ \end{array} \begin{array}{c} \oplus \\ O \\ X \\ \end{array} \end{array} $			C, 3-N rt, 45 1 - H ₂ O		Ð }	$ \begin{array}{c} $
Compound	CA	CB	H _A	H _B	X	R
1080	¹² C	¹² C	Н	Н	Na⊕	-
MFA	¹² C	¹² C	Н	Н	-	-
MFAA	¹² C	¹² C	Н	Н	H⊕	-
¹³ C ₂ D ₂ -MFA	¹³ C	¹³ C	D	D	Na⊕	-
MFA-3NA	¹² C	¹² C	Н	Н	-	
¹³ C ₂ D ₂ -MFA-3NA	¹³ C	¹³ C	D	D	-	

40 Fig. S1 Structures of 1080, its related compounds and derivatization conditions for41 MFA

Table S1 Types of milk and milk powder samples used in this study



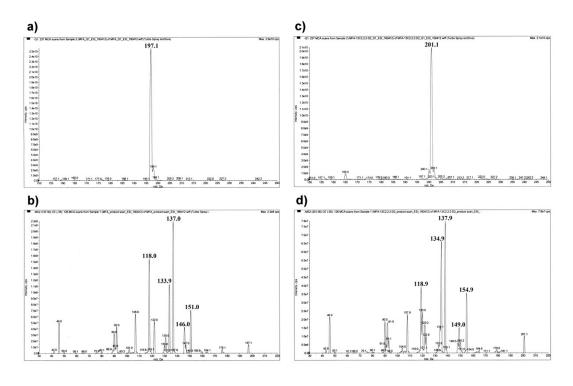
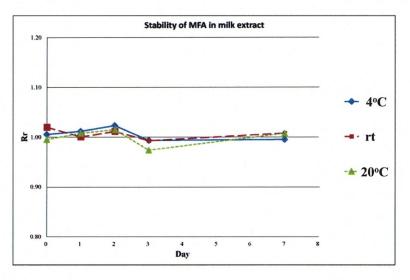

Matrix type	Sample type	Category	Age group	Ingredient type	No. of brands used	Country of origin
Milk	А	Infant milk liquid formula	0-6 months	Cow's milk based	2	Malaysia
						USA
	В	Fresh milk		Cow's milk based	1	Hong Kong
Milk powder	С	Infant formula	0-6 months	Cow's milk based	2	Spain
						Germany
	D	Stage 2	6 – 12 months	Cow's milk based	2	USA
						Netherlands
	Е	Stage 3	1-3 years	Cow's milk based	2	New Zealand
						USA
	F	Stage 4	> 3 years	Cow's milk based	2	New Zealand
	G	Growing up formula	> 12 months	Goat's milk based	1	New Zealand
		Goat whole milk powder	7 years or above and adults	Goat's milk based	1	New Zealand
	Н	Stage 2	6 – 12 months	Soy milk based	1	USA
	Ι	Whey protein powder	> 3 years	Pure whey protein	1	Switzerland

Table S2 A series of EWG substituted anilines evaluated for the MFA derivatization

EWG substituted aniline	Molecular formula of the derivative	Nominal mass (m/z)	Most abundant precursor ion (m/z)	In-source fragmentation	Remarks
2,4-DCA	C ₈ H ₆ Cl ₂ FNO	221	201	YES	
3,4-DCA	C ₈ H ₆ Cl ₂ FNO	221	201	YES	
3,5-DCA	C ₈ H ₆ Cl ₂ FNO	221	201	YES	
2,4-DFA	C ₈ H ₆ F ₃ NO	189	169	YES	
3,4-DFA	C ₈ H ₆ F ₃ NO	189	169	YES	
3,5-DFA	C ₈ H ₆ F ₃ NO	189	169	YES	
2-NA	C ₈ H ₇ FN ₂ O ₃	198	198	NO	
3-NA	C ₈ H ₇ FN ₂ O ₃	198	198	NO	
3,5-DNA	C ₈ H ₆ FN ₃ O ₅	225			No reaction

/1



82 Fig. S3 a) Negative ion ESI full scan spectra of MFA-3NA; b) Negative ion LC-ESI-

83 MS/MS product ion scan spectra of MFA-3NA; c) Negative ion ESI full scan spectra

84 of ${}^{13}C_2D_2$ -MFA-3NA and d) Negative ion LC-ESI-MS/MS product ion scan spectra of 85 ${}^{13}C_2D_2$ -MFA-3NA.

87 Fig. S4 Stability of MFA-3NA in different matrices and under different storage

88 temperatures

Compound	Precursor Ion (m/z)	Product Ion (m/z)	CE (eV)	Remark
MFA-3NA	198	131	25	Qualification
	198	161	10	Quantitation
	198	177	15	Qualification
$^{13}C_2D_2$ -MFA-3NA	202	135	25	Qualification
	202	165	10	Quantitation
	202	181	10	Qualification

89 Table S3 a) MRM transitions monitored in GC-MS/MS analysis (CI, -ve mode).

91 b) MRM transitions monitored in LC-MS/MS analysis (ESI, -ve mode).

Compound	Precurso r Ion (m/z)	Produc t Ion (m/z)	DP (V)	CE (V)	Remark
MFA-3NA	197	118	-44	25	Quantitation
	197	134	-80	-24	Qualification
	197	137	-80	-24	Qualification
	197	146	-51	-33	Qualification
	197	151	-80	-28	Qualification
$^{13}C_2D_2$ -MFA-3NA	201	119	-66	-28	Quantitation
	201	135	-40	-35	Qualification
	201	138	-30	-27	Qualification
	201	149	-30	-32	Qualification
	201	155	-60	-35	Qualification

93 Table S4 LODs, LOQs, slopes and intercepts of the solution and matrix-matched calibration curves of MFA with regression statistics by GC-94 MS/MS and LC-MS/MS

Matrix	Technique	a	b	r ²	s _b	$s_{y/x}$	F	р	LOD	LOQ
Solution	GC-MS/MS	1.59 × 10 ⁻³	0.0137	0.999	9.07 × 10 ⁻⁵	0.0165	5.1 × 10 ⁻⁴	1.00		
	LC-MS/MS	1.30 × 10 ⁻³	0.0233	1.00	3.04 × 10 ⁻⁵	5.54 × 10 ⁻³	0.66	0.63		
Milk	GC-MS/MS	4.03 × 10 ⁻⁴	0.0133	1.00	2.95 × 10 ⁻⁵	5.38 × 10 ⁻³	0.64	0.65	0.0013 µg/L	0.0042 µg/L
	LC-MS/MS	-2.43 × 10 ⁻³	0.0241	1.00	4.08 × 10 ⁻⁵	7.43 × 10 ⁻³	2.19	0.13	0.00010 µg/L	0.00033 µg/L
Milk powder	GC-MS/MS	6.83 × 10 ⁻³	0.0127	1.00	3.22 × 10 ⁻⁵	5.87 × 10 ⁻³	0.24	0.91	0.0025 µg/kg	0.0085 µg/kg
	LC-MS/MS	4.84 × 10 ⁻⁴	0.0242	1.00	3.86 × 10 ⁻⁵	7.03 × 10 ⁻³	0.027	1.00	0.0026 µg/kg	0.0088 µg/kg

Remarks: The linear regression equations of the calibration curves were expressed in the form of y = bx + a (where y = area of analyte divided by the area of internal standard, b = slope of the regression line, x = concentration of analyte, a = intercept of the regression line, $r^2 =$ square of correlation coefficient, $s_b =$ standard deviation of slope, $s_{y/x} =$

97 standard error of estimate). F = F-statistic and p = p-value of the lack-of-fit test.

98 99

100

101

102 103

Matrix Type			Low I.S. s	pike	High I.S. s	Student's <i>t</i> -test		
	Sample Type	Measurement Technique	Mean Recovery (%)	SD (%)	Mean Recovery (%)	SD (%)	<i>t</i> -value	р
Milk Powder	Cow's milk based	GC-MS/MS	99	4.2	97	1.4	0.89	0.43
	Whey protein	GC-MS/MS	100	6.1	94	2.6	1.7	0.17
	Soy milk based	LC-MS/MS	98	1.6	96	0.32	1.4	0.24
	Goat's milk based	LC-MS/MS	99	2.3	99	1.6	0.50	0.64
Milk	Infant milk liquid formula	GC-MS/MS	100	5.3	99	1.8	0.22	0.83
	Fresh milk	LC-MS/MS	92	5.1	100	2.6	2.4	0.07

105 **Table S5** Comparison of the recovery data of MFA at different I.S. fortification levels based on Student's *t*-test

106 Remarks: Mean recovery was calculated from three independent determinations (N = 3). Critical *t*-value = 2.78 ($\alpha = 0.05$ with degree of

107 freedom = 4).

108