Supporting Information for

Piperazine-tuned NBD-based colorimetric and fluorescent turn-off probes for hydrogen sulfide

Zhong-yong Xu1, Zi-ying Wu1, Hui-ya T	an ¹ , Jin-wu Yan ^{1,2*}	, Xiao-lin Liu ¹ , .	Jia-ying Li ¹ ,	Zhi-yan Xu	l ¹ ,
Chang-zhi Dong ^{2,3} . Lei Zhang ^{1,2}					

1	School	of	Biology	and	Biological	Engineering,	South	China	University	of	Technology
C	Tuangzho	ou 5	10006, P.	R. C	hina.						

² Joint International Research Laboratory of Synthetic Biology and Medicine, South China University of Technology, Guangzhou 510006, P. R. China.

³ Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France.

* Corresponding Author.

School of Biology and Biological Engineering,

South China University of Technology

Guangzhou 510006, P. R. China.

Tel: +86 20 39380678.

E-mail address: yjw@scut.edu.cn.

List of contents

Synthesis of compounds	3
General procedure of MTT assay	4
Supporting figures	5
Table S1	5
Figure S1.	6
Figure S2.	7
Figure S3.	8
Figure S4.	9
Figure S5.	10
Figure S6.	10
Figure S7.	11
Figure S8.	11
Supporting NMR and MS spectra	12

1. Synthesis of other compounds

1.1 Synthesis of NBD-Pz

The compound **NBD-Pz** was synthesized according to the literature as dark orange product. A red solid was obtained, yield: 62%; M.p.: 134-135 °C; ESI-HRMS (m/z): [M+Na]⁺ calcd: 272.0778, found: 272.0781; ¹H NMR (400 MHz, d₆-DMSO) δ 8.44 (d, J = 9.2 Hz, 1H), 6.64 (d, J = 9.3 Hz, 1H), 4.08 (s, 4H), 2.95-2.93 (m, 4H); ¹³C NMR (101 MHz, d₆-DMSO) δ 145.75, 145.43, 145.25, 136.72, 120.91, 103.65, 51.73, 46.23.

1.2 Synthesis of 2 and 3

NO₂

$$CH_2Cl_2, \qquad O_2N$$

$$H_2N \hookrightarrow_n^{NH_2}$$

$$O_2N$$

Scheme S1 Synthesis of probes 2 and 3

To a round-bottomed flask (50 mL) was added 10 mmol of diamine and 30 mL CH_2Cl_2 . Then NBD-Cl (1 mmol) was added. The reaction was stirred at room temperature for 30 min. The resulting solution was evaporated to dryness under reduced pressure. The residue was redissolved in CH_2Cl_2 (50 mL) and washed with saturated salt water (3×30 mL). Then MgSO₄ was added to remove water and the filtrate was evaporated. The residue was not purified and put into the next step.

The intermediate was dissolved in CH_2Cl_2 (50 mL), and TEA (2 mmol) was added. The reaction mixture was stirred at 0 °C. Then PTSC (1.5 mmol) was added and stirred for 1 hour at 0 °C. The reaction mixture was stirred other 5 hours at room temperature. The resulting solution was evaporated to dryness under reduced pressure. The residue was chromatographed on silica gel with ethyl acetate-petroleum ether to afford the product.

M.p: 164-165 °C. ESI-HRMS calcd for $C_{17}H_{17}N_5O_5SNa$ ([M+Na]⁺): 400.0686; found: 400.0698. ¹H NMR (400 MHz, DMSO) δ 9.22 (s, 1H), 8.47 (d, J = 8.8 Hz, 1H), 7.75 (s, 1H), 7.62 (d, J = 7.6 Hz, 2H), 7.24 (d, J = 7.4 Hz, 2H), 6.32 (d, J = 8.5 Hz, 1H), 3.54 (s, 2H), 3.11 (q, J = 5.5 Hz, 2H), 2.28 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ 145.48, 144.93, 144.45, 143.24, 138.28, 137.87, 129.94, 126.93, 121.49, 99.62, 43.38, 41.24, 21.28.

M.p: 189-190 °C.ESI-HRMS calcd for $C_{17}H_{17}N_5O_5SNa$ ([M+Na]+): 428.0999; found: 428.1007. ¹H NMR (400 MHz, DMSO) δ 9.51 (s, 1H), 8.49 (d, J = 8.6 Hz, 1H), 7.65 (d, J = 7.5 Hz, 2H), 7.52 (t, J = 5.5 Hz, 1H), 7.36 (d, J = 7.7 Hz, 2H), 6.38 (d, J = 8.8 Hz, 1H), 3.42 (d, J = 4.6 Hz, 2H), 2.76 (q, J = 6.3 Hz, 2H), 2.35 (s, 3H), 1.64 (m, 2H), 1.48 (m, 2H). ¹³C NMR (101 MHz, DMSO) δ 145.69, 144.89, 144.61, 142.96, 138.38, 138.10, 130.04, 126.93, 121.05, 99.61, 43.28, 42.60, 26.89, 25.25, 21.38.

2. General procedure of MTT assay

The MTT assay was used to test the cytotoxicity of 1 to HeLa cells. Hela cells were cultured in a 96-well plate. Various concentrations of 1 were added to the wells and the cells were incubated at 37 °C under an atmosphere of 5% CO_2 for 48 h. 10 μ M 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) was added to each well and incubated at 37 °C under 5% CO_2 for 4 h. Remove the MTT solution and yellow precipitates (formazan) observed in plates were dissolved in 100 mL DMSO. The absorbance of 570 nm was measured for each well using microplate reader. The viability of cells was calculated according to the following equation: Cell viability = A570 (sample) / A570 (control).

3. Supporting figures

Table S1 Fluorescent probes of piperazinyl-NBD derivatives for detecting H₂S.

Compound	R	$\kappa_{obs}(s^{-1})([H_2S])$ $\kappa_2(M^{-1}s^{-1})$		Ref.		
NBD-Pz	Н	$4.4 \times 10^{-3} (75 \mu M)$	43.26	Org. Biomol. Chem. 2016,		
		2.0×10 ⁻³ (200μM)	21.77	14, 11117.		
A1	N _N	ND	ND	Chem. Asian J. 2016 , 11, 1376		
A2	N ₁	ND	ND			
A4	(B)PPh ₃	$2.04 \times 10^{-3} (100 \mu M)$	ND	Anal. Chem. 2016 , 88, 5476		
A5	h fr	ND	ND	Org. Biomol. Chem. 2015 , 13, 9760		
A6	(CCC)	1.1×10 ⁻³ (500μM)	2.2	Tetrahedron Lett. 2013 , 54, 6937.		

A7	a-af	ND	25.0(pH=7.4);6.8(pH=6.8)	Tetrahedron 2015 , 71, 8572
A9	03N Q O C O Q O	ND	ND	Chem. Commun. 2015 , 51, 7505
A10	110 A	ND	ND	Tetrahedron Lett. 2015 , 56(8):1015.
A11		ND	14.9	Chem. Sci. 2017, 8, 2776
A12	HO CONTROL OF THE PROPERTY OF	$3.3 \times 10^{-3} (100 \mu M)$	33(Na ₂ S);37(NaHS)	Tetrahedron Lett. 2016 , 57, 1187
1		2.53×10 ⁻³ (500μM)	0.49	This work

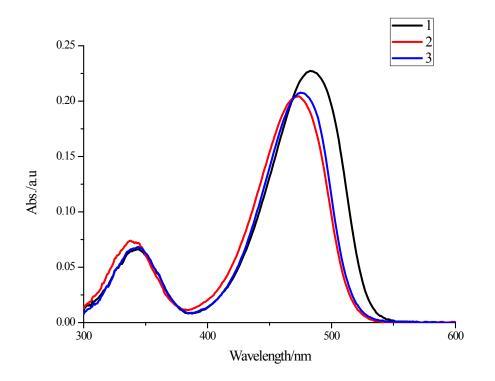
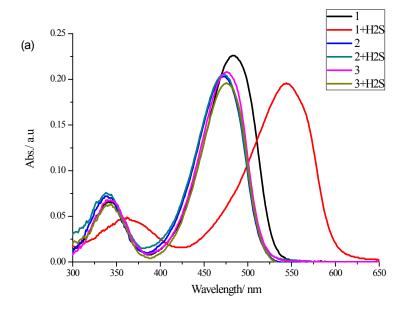



Figure S1. The UV-Vis spectra of 1-3 (10 μ M) in CH₃CN-PBS (v/v = 1:2, pH=7.4, 10 mM) solution at room temperature.

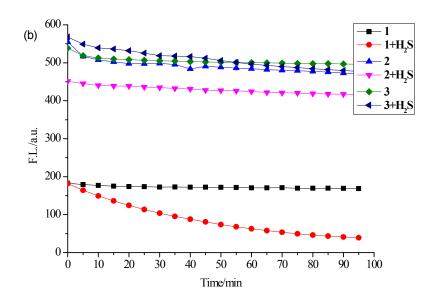


Fig S2. (a) The UV-Vis spectra of 1-3 (10 μ M) and UV-Vis spectral change of 1-3 with H₂S in CH₃CN-PBS (v/v = 1:2, pH=7.4, 10 mM) solution at room temperature. (b) The fluorescent spectra of 1-3 against time and the fluorescent spectral change of 1-3 with H₂S against time in CH₃CN-PBS (v/v = 1:2, pH=7.4, 10 mM) solution at room temperature.

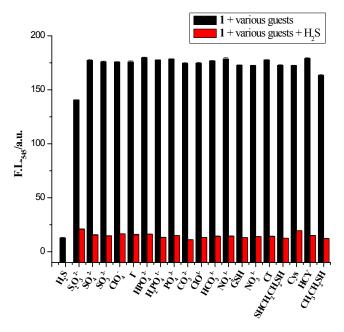
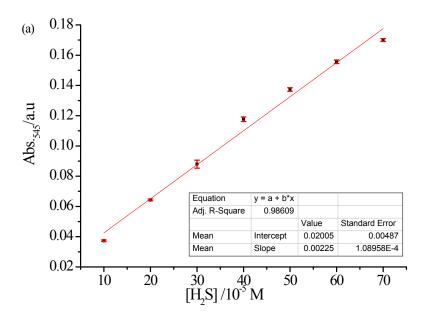



Fig S3. Fluorescence response of 1 (10 μ M) with various guests. Black bar: 1 + various guests. Red bar: 1 + various guests + H₂S. (λ_{ex} =485 nm, λ_{em} =545 nm, slit: 10/10 nm).

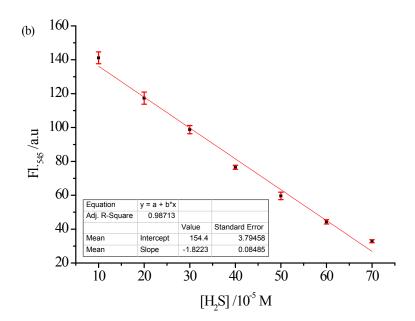


Fig S4. (a) The UV-Vis absorption spectra of 1 (10 μ M) at 545 nm upon the titration of H₂S (100, 200,300,400, 500, 600, 700 μ M) in CH₃CN-PBS (v/v = 1:2, pH=7.4, 10 mM) solution at room temperature. (b) The fluorescence emission spectra of 1 (10 μ M) with the emission at 545 nm upon the titration of H₂S (100, 200,300,400, 500, 600, 700 μ M) in CH₃CN-PBS (v/v = 1:2, pH=7.4, 10 mM) solution at room temperature (λ_{ex} =485 nm).

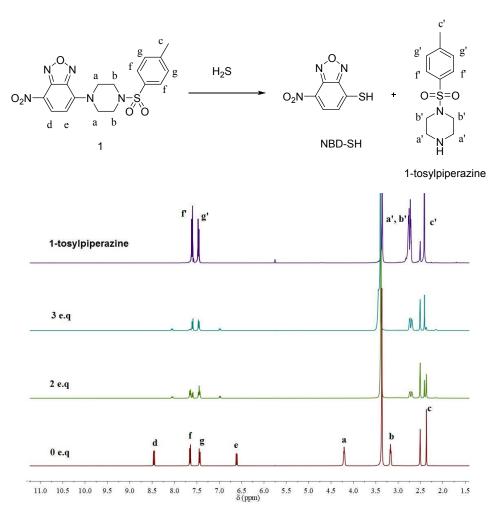


Fig S5. ¹H-NMR spectra of **1** with H₂S in DMSO-d6 (containing 1% D₂O).

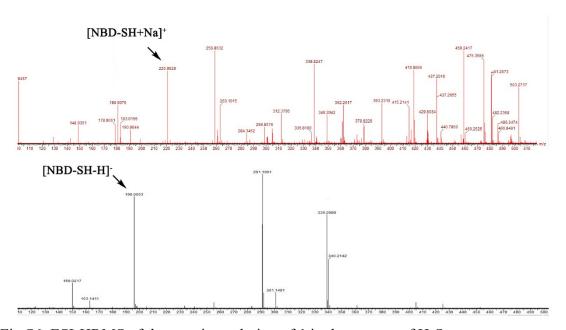


Fig S6. ESI-HRMS of the reaction solution of ${\bf 1}$ in the present of H_2S .

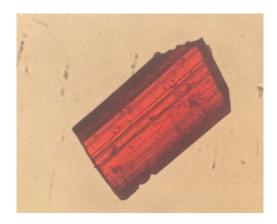
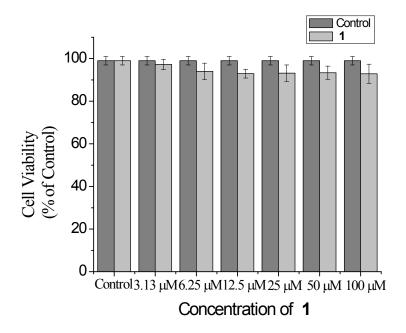
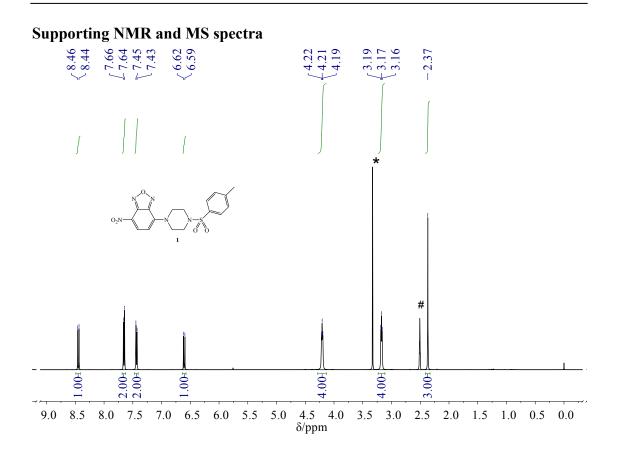
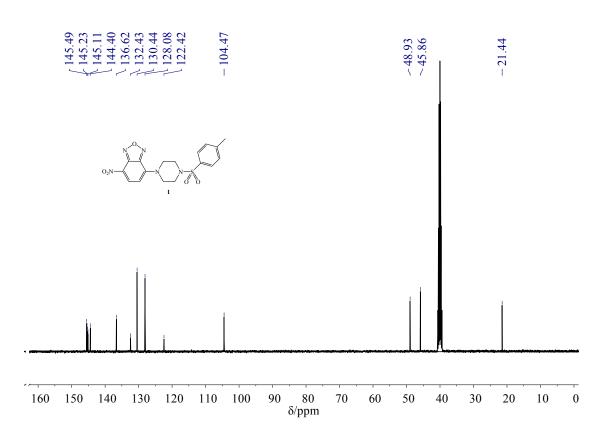
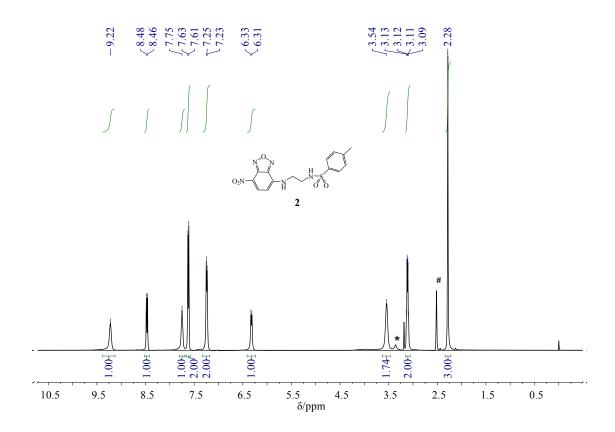
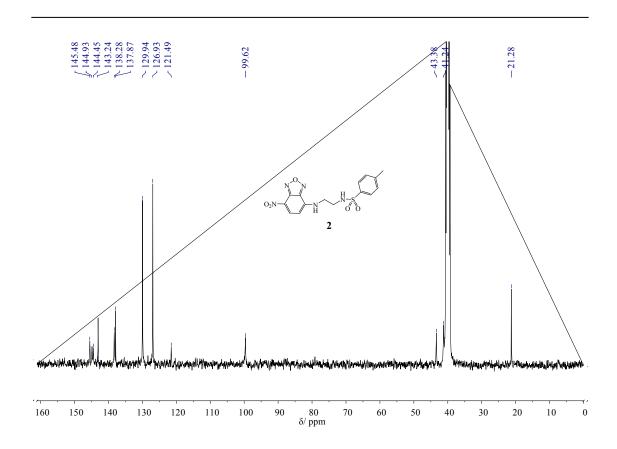
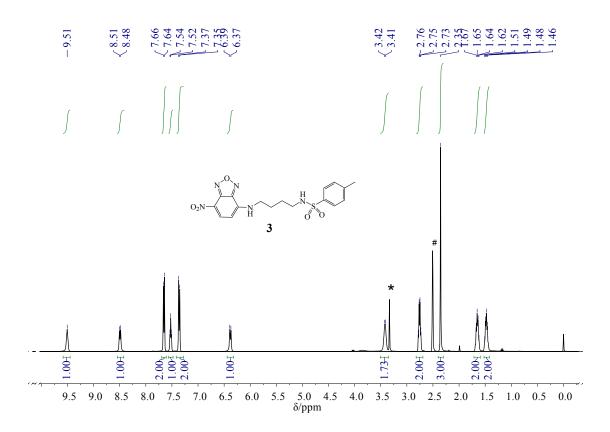


Fig S7. Picture of red crystal of 1.


Fig S8. Cytotoxicity of 1 in Hela cells. Cells were treated with different concentrations of 1 for 24 h and cell viability assay were determined by MTT assay. Data were expressed as means \pm SD.

