Supporting Information

A facile colorimetric method for highly sensitive ascorbic acid

detection by using CoOOH nanosheets

Qiuyu Nie ^a, Qiyong Cai ^{a,*}, Huihui Xu ^a, Zhun Qiao ^a, Zhaohui Li ^{b,*}

^a Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
^b College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China

^{*}Corresponding authors. Tel.: +86-371-67780037.

E-mail address: caiqi@hnu.edu.cn (Q.Y. Cai); zhaohui.li@zzu.edu.cn (Z.H. Li).

Fig. S1 The AFM characterization of CoOOH nanosheets. (A) The image of CoOOH nanosheets.(B) The thickness of CoOOH nanosheets.

A

Fig. S2 The Zeta potential of CoOOH nanosheets.

Fig. S3 The stability of CoOOH nanosheets (A) The stability of CoOOH nanosheets at the room temperature lasting one week (B) The CoOOH nanosheets absorbance at different pH value.

Fig. S4 Effect of pH, reaction buffer in the presence of AA solution and CoOOH nanosheets. The reaction taking place in 30 °C and lasting for 15 min. A0 represents the absorbance of CoOOH nanosheets solution at 430 nm without AA, and A represents the absorbance of CoOOH nanosheets solution at 430 nm with 10 μM AA concentration. (A) 2-(N-morpholino) ethanesulfonic acid (B) phosphate buffer saline (C) Tris-HCl (D) NaAc-HAc Buffer

Method	Linear range	LOD	Assay time	Reference
3D GH-AuNPs/GCE a	1-700 μM	0.028 µM	Not given	1
Mn-SnO ₂ modified GCE	1-900 μM	0.056 µM	Not given	2
Cu-ZnCdS QDs ^b and MnO ₂	5-402 μM	31.63 µM	3 min	3
UCNPs ^c and CoOOH	7.5 -100 μM	□3.32 µM	5 min	4
PDA ^d and CoOOH	0-500 μM	4.8 μM	60 min	5
MoS ₂ quantum dots-MnO ₂	0.33-5 μM	0.039 µM	5 min	6
nanosheets				
Cu-Ag/ reduced graphene oxide	5-30 µM	3.6 µM	Not given	7
NiCo ₂ O ₄ nanowire/flexible	200-750 μM	50 µM	Not given	8
graphene fibers				
CoOOH nanosheets	0.25μM-70 μM	0.057 μM	15 min	This work

Table S1 Different methods for AA detection

^a 3D graphene hydrogel and gold nanoparticles nanocomposite/ glassy carbon electrode;

^b quantum dots

^c upconversion fluorescent nanoprobe

^d Polydopamine

Reference

- 1. Q. Zhu, J. Bao, D. Huo, M. Yang, C. Hou, J. Guo, M. Chen, H. Fa, X. Luo and Y. Ma, Sensors and Actuators B: Chemical, 2017, 238, 1316-1323.
- 2. N. Lavanya, E. Fazio, F. Neri, A. Bonavita, S. G. Leonardi, G. Neri and C. Sekar, Journal of Electroanalytical Chemistry, 2016, 770, 23-32.
- 3. H. Rao, Y. Gao, H. Ge, Z. Zhang, X. Liu, Y. Yang, Y. Liu, W. Liu, P. Zou, Y. Wang, X. Wang, H. He and X. Zeng, *Anal Bioanal Chem*, 2017, **409**, 4517-4528.
- 4. Y. Chen, T. Zhang, X. Gao, W. Pan, N. Li and B. Tang, Chinese Chemical Letters, 2017, 28, 1983-1986.
- 5. Y. Y. Zhao, L. Li, R. Yu, T. T. Chen and X. Chu, Analytical Methods, 2017.
- 6. Y.-L. Xu, X.-Y. Niu, H.-L. Chen, S.-G. Zhao and X.-G. Chen, Chinese Chemical Letters, 2017, 28, 338-344.
- 7. G. Darabdhara, B. Sharma, M. R. Das, R. Boukherroub and S. Szunerits, Sensors and Actuators B: Chemical, 2017, 238, 842-851.
- 8. W. Cai, J. Lai, T. Lai, H. Xie and J. Ye, Sensors and Actuators B: Chemical, 2016, 224, 225-232.