Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2018

Combining Cross-Reactivity of Electrode Array with the Selective Thiol Reporting Process of Redox Indicators: Targeted Sensing of Biothiols

Sakthinathan Indherjith and Karuthapandi Selvakumar*

Electroorganic Division, CSIR-Central Electrochemical Research Institute, Karaikudi-630003, Tamil Nadu, India

S. No	Content	Page No
1	Abbreviation	S2
2	Synthesis	S3
2.1	Synthesis of metallophthalocyanine complexes, $CuPc(1)$ and $MnPc(2)$	S 3
2.2	Synthesis of graphene oxide from graphite	S3
2.3	Reduction of graphene oxide to reduced graphene (rGO)	S4
2.4	General procedure for preparation of GO-MPc-PDA (3 and 4) and rGO-MPc-PDA(5 and 6)	S4
3	Figures	S6-S25
4	Tables	S26-S37
5	Stepwise picture for generating LDA	S38-S49
6	Reference	S50

1. Abbreviation

AA	Ascorbic acid
Cys	Cysteine
CuPc	Copper phthalocyanine
DA	Dopamine
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DMF	N,N'-dimethylformamide
DMSO	Dimethylsulfoxide
GSH	Glutathione
Hcys	Homocysteine
MnPc	Manganese phthalocyanine
MPc	Metallophthalocyanine
UA	Uric acid
GO	Graphene oxide
GCE	Glassy carbon electrode
LDA	Linear discriminant analysis
LSV	Linear sweep voltammetry
rGO	Reduced graphene oxide

2. Synthesis

2.1 Synthesis of metallophthalocyanine complexes, CuPc (1) and MnPc (2)

A mixture of anhydrous metal salts (0.35 equ), phthalonitrile (1 equ), DBU (2 equ) in pentanol was stirred at 140-160 °C for 24 h under a nitrogen atmosphere.¹ After the reaction, the mixture was allowed to cool to room temperature, and the solvent was evaporated. The crude mixture was dissolved in chloroform (10 mL) and precipitated using hexane (100 mL). Hexane was decanted, and the precipitate was dissolved in DMF (10 mL) and again re-precipitated by adding methanol (100 mL). The precipitate was washed several times with methanol using centrifugation technique. The purity of the complexes CuPc (1) and MnPc (2) was ascertained by elemental analysis as 94 % and 85% respectively. Anal. Calcd for $C_{32}H_{18}MnN_8$ (MnPc (2)), C, 66.4; H, 3.1; N, 19.4, Found: C, 62.8; H, 2.4; N, 18.4, Anal. Calcd for $C_{32}H_{18}MnN_8$ (MnPc (2)), C, 67.5; H, 3.2; N, 19.7. Found: C 58.6; H, 2.3; N 15.7.

2.2 Synthesis of graphene oxide from graphite

Graphene oxide (GO) was synthesized from graphite powder using Hummer's method.² To the hot (80 °C) concentrated H₂SO₄ solution (12 mL) containing K₂S₂O₈ (4 g) and P₂O₅ (4 g), graphite powder (2 g) was added under continuous stirring. After 6 h, the mixture was allowed to cool to room temperature. Carefully the above mixture was poured into 150 mL of MilliQ water, then filtered and dried overnight at 60 °C. The pre-oxidized graphite powder (1 g) was added to cold H₂SO₄ (46 mL) at 0 °C, and then KMnO₄ (6 g) was gradually added under continuous stirring in ice-bath. After 15 min, NaNO₃ (1 g) was slowly introduced into the above reaction mixture. The mixture was stirred at room temperature for 2 h, and it was diluted with MilliQ-water (100 mL). The reaction was quenched by adding MilliQ water (280 mL) and 30 % H₂O₂ (5 mL). The crude resultant was centrifuged, and the supernatant was discarded. The resultant colloidal material was

suspended in HCl (1 M), centrifuged and the supernatant was discarded. Finally, the material was washed with water several times using centrifugation technique.

2.3 Reduction of graphene oxide to reduced graphene oxide (rGO)

Obtained GO (20 mg) was suspended in distilled water (200 mL). To the suspension, NaBH₄ (2.28 g) and CaCl₂ (1.78 g) were added. The reaction mixture was allowed to stir at room temperature for 12 h to obtain reduced graphene oxide (rGO). Then, the rGO was filtered and washed with distilled water for several times to remove the unreacted NaBH₄ and CaCl₂.³

2.4 General procedure for preparation of GO-MPc-PDA (3 and 4) and rGO-MPc- PDA (5 and 6)

The general procedure for the synthesis of graphene-metallophthalocyanine-PDA materials (**3-6**) is presented in the scheme **1.** Typically 10 mg of carbon nanomaterials (GO or rGO) was suspended in 50 mL of water and DMSO (1:1 volume ratio) and sonicated for 30 min to disperse the material. To the dispersion, metallophthalocyanine **1**/or **2** (5 mg) was added and sonicated for another 15 min. Then, dopamine (5 mg) was added to the suspension and further sonicated for 3 h.⁴ The suspension was washed with water followed by methanol using centrifugation method. The elemental composition of the materials was quantified using Energy Dispersive X-ray Spectroscopy (EDAX). The data are provided as follows.

GO-CuPc-PDA **3** (C-52.82 %, O-33.74 %, N-10.57%, Cu-2.87), GO-MnPc-PDA **4** (C-54.43 %, O-29.23 %, N-11.29 %, Mn-5.06 %), rGO-CuPc-PDA **5** (C-42.49 %, O-11.01 %, N-12.35 %, Ca-2.4 %, Cu-9.03 %), rGO-MnPc-PDA **6** (C-47.44 %, O-12.50, N-18.11 %, Ca-7.72, Mn-9.75 %)

3. Scanning electron microscopy (SEM)

Materials (3-6) were dispersed individually in the methanol (1 mg/1 mL) in a separate Eppendorf tube and sonicated for 30 min. The dispersion (20 μ L) was drop casted over the separate SEM grid containing carbon tape and allowed it to dry at room temperature. The prepared grids were subjected to the SEM analysis. The presence of polydopamine (PDA) in materials **3-6** was evident from SEM image (Figure S4). The PDA covered the graphene sheets by forming a thin uniform layer, SEM images showing the crinkled morphology of graphene sheets, and in agreement with findings of earlier reports on similar materials.^{4,5}

4. Figures

Figure S1. UV-visible spectra for the pretreated plasma (100 μ L) sample spiked in the phosphate buffer (1900 μ L). Concentration of the proteins = absorbance at 280 nm divided by path length⁶ (1 cm).

Eager 300 Report

Page: 1 Sample: HBS-RS-SK-S1 (HBS-RS-SK-S1)

Method Name	:	PGAPP28092017			
Method File	:	D:\CHNS-2017\PGAPP28092	2017.mth		
Chromatogram	:	HBS-RS-SK-S1			
Operator ID	:	Prakash	Company Name	:	C.E. Instruments
Analysed	:	09/28/2017 16:51	Printed	:	10/9/2017 10:36
Sample ID	:	HBS-RS-SK-S1 (# 33)	Instrument N.	:	Instrument #1
Analysis Type	:	UnkNown (Area)	Sample weight	:	.876

Calib. method : using 'K Factors'

!!! Warning missing one or more peaks.

Element Name	8	Ret.Time	Area	BC	Area ratio	K factor
1	0.0000	6	2767	RS		0.0000
Nitrogen	18.3763	43	174608	RS	8.327803	.108468E+07
Carbon	62.7508	67	1454101	RS	1.000000	.263711E+07
Hydrogen	2.3929	190	138112	RS	10.528420	.658869E+07
Totals	83.5200		1769588			

Figure S2. Elemental analysis (CHN) report for CuPc (1).

```
Eager 300 Report
Page: 1 Sample: HBS-RS-Mn-PC-2 (HBS-RS-Mn-PC-2)
Method Name : RM-TP-031117
Method File : D:\CHNS-2017\RM-TP-031117.mth
Chromatogram : HBS-RS-Mn-PC-2
Operator ID: T.PRAPAKARANCompany Name : C.E. InstrumentsAnalysed: 11/03/2017 17:09Printed: 11/3/2017 19:19Sample ID: HBS-RS-Mn-PC-2 (# 19)Instrument N. : Instrument #1
Analysis Type : UnkNown (Area)
                                                        Sample weight : .736
Calib. method : using 'K Factors'
!!! Warning missing one or more peaks.
                           % Ret.Time Area BC Area ratio K factor
 Element Name

        0.0000
        6
        16882 RS
        0.0000

        15.7039
        43
        124323 RS
        9.234244
        .107564E+07

        58.5757
        66
        1148029 RS
        1.000000
        .265620E+07

        2.2896
        193
        117780 RS
        9.747232
        .698943E+07

        76.5692
        1407014
        1407014
        1407014

     1
Nitrogen
Carbon
Hydrogen
                                76.5692
                                                              1407014
Totals
```

Figure S3. Elemental analysis (CHN) report for MnPc (1).

Ν	7	K-series	28.54	28.54	26.84	4.34	0.254	1.124	1.000	1.000
0	8	K-series	5.91	5.91	4.86	1.10	0.043	1.372	1.000	1.000
Cu	29	K-series	4.04	4.04	0.84	0.21	0.012	2.861	1.000	1.181
		Total:	100.00	100.00	100.00	 				

Figure S4. EDX analysis report for GO-CuPc-PDA (3).

С 6

Figure S5. EDX analysis report for GO-MnPc-PDA (4).

Spectrum: Acquisition 6926

El	AN	Series	unn. C	norm. C	Atom. C	Error	(1 Sigma)	K fact.	Z corr.	A corr.	F corr.
			[wt.%]	[wt.%]	[at.%]		[wt.%]				
С	6	K-series	67.80	70.40	83.12		7.77	1.099	0.640	1.000	1.000
0	8	K-series	14.47	15.02	13.31		2.11	0.135	1.114	1.000	1.000
Cu	29	K-series	11.70	12.15	2.71		0.46	0.046	2.447	1.000	1.087
Ca	20	K-series	2.34	2.43	0.86		0.10	0.006	3.850	1.000	1.038
		Total:	96.31	100.00	100.00						

Figure S6. EDX analysis report for rGO-CuPc-PDA (5).

Figure S7. EDX analysis report for rGO-MnPc-PDA (6).

Figure S8. Raman spectra of, a) materials 1, 3, and 5, and b) materials 2, 4, and 6.

Figure S9. SEM images: a) GO-CuPc-PDA (3), b) rGO-CuPc-PDA (5), c) GO-MnPc-PDA (4), and d) rGO-MnPc-PDA (6).

Figure S10. Linear sweep voltammogram of CuPc coated electrode (1') towards GSH show the electrode fouling behavior of electrode 1' at the concentration GSH 200 μ M.

Figure S11. Current response of the modified electrodes 1'-6' towards Cys, GSH and Hcys (50 µM).

Figure S12. Linear sweep voltammogram of rGO-MnPc-PDA coated electrode (**3'**) towards Cys at various concentration (0, 5 μ M, 10 μ M, 50 μ M, 100 μ M, 200 μ M, 500 μ M and 1 mM).

Figure S13. a) LDA score plot was generated using the difference in current data obtained using the CuPc (1'), GO-CuPc-PDA (3') and rGO-CuPc-PDA (5'). b) LDA score plot was generated using the difference in current data obtained using the MnPc (2'), GO-MnPc-PDA (4') and rGO-MnPc-PDA (6'). c) LDA score plot was generated using the difference in current data obtained using the GO-CuPc-PDA (3') and GO-MnPc-PDA (4'), rGO-CuPc-PDA (5') and rGO-MnPc-PDA (6'). d) LDA score plot was generated using the difference in current data obtained using the difference in current data obtained using the difference in current data obtained using the GO-CuPc-PDA (3') and GO-MnPc-PDA (4'), rGO-CuPc-PDA (5') and rGO-MnPc-PDA (6'). d) LDA score plot was generated using the difference in current data obtained using all the array electrodes (see also figure 6b). Note: Thiol concentrations 5, 50, and 100 refers thiol concentrations, the current responses were collected at 0.45 V.

Figure S14. Linear sweep voltammograms a-f show the response of respective electrode 1'-6' towards the thiols spiked in the diluted goat plasma; Conditions: [RSH]-50 μ M, scan rate- 20mV/s.

Figure S15. LDA score plot showing the poor discriminatory ability of electrode array (1'-6') towards thiols spiked in diluted plasma sample that doesn't contain added redox indicator (AA, DA, and UA).

Figure S16. a) LDA score plot was generated using the difference in current data obtained using the CuPc (1'), GO-CuPc-PDA (3') and rGO-CuPc-PDA (5'). b) LDA score plot was generated using the difference in current data obtained using the MnPc (2'), GO-MnPc-PDA (4') and rGO-MnPc-PDA (6'). c) LDA score plot was generated using the difference in current data obtained using the GO-CuPc-PDA (3') and GO-MnPc-PDA (4'), rGO-CuPc-PDA (5') and rGO-MnPc-PDA (6'). d) LDA score plot was generated using the difference in current data obtained using the difference in current data obtained using the GO-CuPc-PDA (3') and GO-MnPc-PDA (4'), rGO-CuPc-PDA (5') and rGO-MnPc-PDA (6'). d) LDA score plot was generated using the difference in current data obtained using all the array electrodes (see also figure 10). Note: Thiol concentrations 5, 50, and 100 refers thiol concentrations, the current responses were collected at 0.38, 0.48 and 0.58 V.

Figure S17. Predicted *vs* experimental concentration plots generated using PLS-R model for a) Cys, b) GSH, and c) Hcys. Calibration samples (Black dots) and its regression line (Black line), validation samples (Red dots) and its regression line (Red line).

Figure S18. a) LSV of electrode **1'** in plasma spiked PBS contains AA (line red) and without AA (black line), and AA modified electrode **1'** in plasma spiked PBS (line blue), b) LSV of electrode **1'** in plasma spiked PBS contains UA (line red) and without UA (black line), and UA modified electrode **1'** in plasma spiked PBS (line blue), c) LSV of electrode **1'** in plasma spiked PBS contains DA (line red) and without DA (black line), and DA modified electrode **1'** in plasma spiked PBS (line blue).

Figure S19. a) LSV of electrode **2'** in plasma spiked PBS contains AA (line red) and without AA (black line), and AA modified electrode **2'** in plasma spiked PBS (line blue), b) LSV of electrode **2'** in plasma spiked PBS contains UA (line red) and without UA (black line), and UA modified electrode **2'** in plasma spiked PBS (line blue), c) LSV of electrode **2'** in plasma spiked PBS contains DA (line red) and without DA (black line), and DA modified electrode **2'** in plasma spiked PBS (line blue), c) LSV of electrode **2'** in plasma spiked PBS (line blue), c) LSV of electrode **2'** in plasma spiked PBS (line blue), c) LSV of electrode **2'** in plasma spiked PBS (line blue), c) LSV of electrode **2'** in plasma spiked PBS (line blue), c) LSV of electrode **2'** in plasma spiked PBS (line blue), c) LSV of electrode **2'** in plasma spiked PBS (line blue), c) LSV of electrode **2'** in plasma spiked PBS (line blue), c) LSV of electrode **2'** in plasma spiked PBS (line blue), c) LSV of electrode **2'** in plasma spiked PBS (line blue), c) LSV of electrode **2'** in plasma spiked PBS (line blue), c) LSV of electrode **2'** in plasma spiked PBS (line blue), c) LSV of electrode **2'** in plasma spiked PBS (line blue) (line red) and without DA (black line), and DA modified electrode **2'** in plasma spiked PBS (line blue)

Figure S20. a) LSV of electrode **4'** in plasma spiked PBS contains AA (line red) and without AA (black line), and AA modified electrode **4'** in plasma spiked PBS (line blue), b) LSV of electrode **4'** in plasma spiked PBS contains UA (line red) and without UA (black line), and UA modified electrode **4'** in plasma spiked PBS (line blue), c) LSV of electrode **4'** in plasma spiked PBS contains DA (line red) and without DA (black line), and DA modified electrode **4'** in plasma spiked PBS (line blue), c) LSV of electrode **4'** in plasma spiked PBS (line blue), c) LSV of electrode **4'** in plasma spiked PBS (line blue), c) LSV of electrode **4'** in plasma spiked PBS (line blue), c) LSV of electrode **4'** in plasma spiked PBS (line blue), c) LSV of electrode **4'** in plasma spiked PBS (line blue), c) LSV of electrode **4'** in plasma spiked PBS (line blue), c) LSV of electrode **4'** in plasma spiked PBS (line blue), c) LSV of electrode **4'** in plasma spiked PBS (line blue), c) LSV of electrode **4'** in plasma spiked PBS (line blue), c) LSV of electrode **4'** in plasma spiked PBS (line blue), c) LSV of electrode **4'** in plasma spiked PBS (line blue), c) LSV of electrode **4'** in plasma spiked PBS (line blue) (line red) and without DA (black line), and DA modified electrode **4'** in plasma spiked PBS (line blue)

Figure S21. a) LSV of electrode **5'** in plasma spiked PBS contains AA (line red) and without AA (black line), and AA modified electrode **5'** in plasma spiked PBS (line blue), b) LSV of electrode **5'** in plasma spiked PBS contains UA (line red) and without UA (black line), and UA modified electrode **5'** in plasma spiked PBS (line blue), c) LSV of electrode **5'** in plasma spiked PBS contains DA (line red) and without DA (black line), and DA modified electrode **5'** in plasma spiked PBS (line blue), c) LSV of electrode **5'** in plasma spiked PBS (line blue), c) LSV of electrode **5'** in plasma spiked PBS (line blue), c) LSV of electrode **5'** in plasma spiked PBS (line blue), c) LSV of electrode **5'** in plasma spiked PBS (line blue), c) LSV of electrode **5'** in plasma spiked PBS (line blue), c) LSV of electrode **5'** in plasma spiked PBS (line blue), c) LSV of electrode **5'** in plasma spiked PBS (line blue), c) LSV of electrode **5'** in plasma spiked PBS (line blue), c) LSV of electrode **5'** in plasma spiked PBS (line blue), c) LSV of electrode **5'** in plasma spiked PBS (line blue), c) LSV of electrode **5'** in plasma spiked PBS (line blue), c) LSV of electrode **5'** in plasma spiked PBS (line blue) (line red) and without DA (black line), and DA modified electrode **5'** in plasma spiked PBS (line blue)

Figure S22. a) LSV of electrode **6'** in plasma spiked PBS contains AA (line red) and without AA (black line), and AA modified electrode **6'** in plasma spiked PBS (line blue), b) LSV of electrode **6'** in plasma spiked PBS contains UA (line red) and without UA (black line), and UA modified electrode **6'** in plasma spiked PBS (line blue), c) LSV of electrode **6'** in plasma spiked PBS contains DA (line red) and without DA (black line), and DA modified electrode **6'** in plasma spiked PBS (line blue).

Figure S23. Shows the plot of AA oxidation current as a function of square root of scan rate for the electrodes a) **1'**, b) **3'** and c) **5'**.

Figure S24. Shows the plot of DA oxidation current as a function of square root of scan rate for the electrodes a) **1'**, b) **2'**, c) **3'**, d) **4'**, e) **5'**, f) **6'**

Figure S25. Shows the plot of DA oxidation current as a function of square root of scan rate for the electrodes a) 1', b) 2', c) 3', d) 4', e) 5', f) 6'

4. Tables

Electr odes		CuPc			MnPc		GO-	CuPc-F	PDA	rGO	-CuPc-]	PDA	GO-	MnPc-I	PDA	rGO-	MnPc-	PDA
Repilc	380	480	580	380	480	580	380	480	580	380	480	580	380	480	580	380	480	580
ates	mV	mV	mV	mV	mV	mV	mV	mV	mV	mV	mV	mV	mV	mV	mV	mV	mV	mV
	6.12	6.53	4.61	4.36	8.37	9.6	6.3	7.5	8.7	1.0	1.1	9.0	9.7	1.0	1.7	1.2	1.4	1.1
Plasm	E-	E-	E-	E-	E-	1E-	6E-	7E-	3E-	1E-	3E-	1E-	1E-	7E-	2E-	2E-	8E-	6E-
a-1	07	07	07	07	07	07	07	07	07	06	06	07	07	06	06	06	06	06
	8.12	7.85	5.95	3.9	7.52	1.0	9.8	1.1	1.1	1.4	1.3	1.1	1.3	1.4	1.9	1.7	1.9	1.5
Plasm	E-	E-	E-	E-	E-	2E-	3E-	8E-	8E-	E-	8E-	3E-	5E-	1E-	1E-	2E-	9E-	4E-
a-1	07	07	07	07	07	06	07	06	06	06	06	06	06	06	06	06	06	06
51	9.04	7.99	6.34	4.5	8.38	1.0	1.0	1.2	1.2	1.4	1.3	1.1	1.5	1.6	2.1	1.8	2.0	1.5
Plasm	E-	E-	E-	E-	E-	8E-	3E-	5E-	E-	6E-	6E-	2E-	1E-	2E-	9E-	E-	9E-	8E-
a-1	07	07	07	07	07	06	06	06	06	06	06	06	06	06	06	06	06	06
Diagona	9.24 E	7.94 E	6.46 E	3.97	7.56	9.7	9.6 9E	1.2 E		1.4	1.3	1.1 5E	1.3	1.4 9E	1.9	1.8	2.1	1.6 2E
	E- 07	E- 07	E- 07	E- 07	E- 07	0E- 07	0E-	E- 06	06-	3E- 06	0E-	3E- 06	/E- 06	0E- 06	3E- 06	0E-	/E- 06	3E- 06
a-1	0/	7.4	5.02	4.06	7.84	1.0	07	1.2	1.2	1.4	1.4	1.2	1.3	1.5	00	1.8	2 2	1.6
Plasm	9.41 F-	7.4 E-	5.02 E-	4.00 F-	7.84 E-	2E-	9.9 9E-	0E-	1.2 6E-	1.4 4E-	3E-	1.2 4E-	1.3 4E-	1.5 E-	2E-	1.0 8E-	2.2 1E-	1.0 5E-
a-1	07	07	07	07	07	2L- 06	07	06	06	-1L- 06	06	06	-06	06	2L- 06	06	06	06
uı	1 36	1 44	1 74	6 65	1.03	12	13	1.6	17	2.2	21	20	1.6	17	2.2	32	3 5	3.6
Plasm	E-	E-	E-	E-	E-	9E-	2E-	8E-	4E-	5E-	3E-	6E-	1E-	7E-	5E-	5E-	1E-	1E-
a-1	06	06	06	07	06	06	06	06	06	06	06	06	06	06	06	06	06	06
	8.57	6.92	5.08		7.98	1.0	9.5	1.2	1.2	1.5	1.4	1.2	1.3	1.5	2.1	1.8	1.7	1.3
Plasm	E-	E-	E-	4E-	E-	2E-	2E-	8E-	2E-	6E-	5E-	9E-	8E-	9E-	6E-	E-	9E-	E-
a-1	07	07	07	07	07	06	07	06	06	06	06	06	06	06	06	06	06	06
									-		-	-			-		-	-
	3.91	3.02	2.61	9.64	1.9	1.9	4.8	3.9	1.5	2.0	6.4	3.6	3.1		1.8	1.5	5.2	4.9
Cys-	E-	E-	E-	E-	E-	9E-	6E-	6E-	E-	4E-	E-	E-	E-	1E-	E-	6E-	E-	E-
50	07	07	07	08	07	07	07	07	08	07	08	08	07	07	07	07	08	07
	2 70	a a z	1.00	0.01	2.26	•	0.0	6.0	2.0		2.0		•	1.6	0.0		1.5	-
Court	3./8 E	2.87	1.99 E	2.31	3.26 E	2.9 (E	8.2	6.8 E	3.0 1E	2.6 7E	3.0	3.3 0E	2.9	1.6	9.0 0E	2.2 4E	1.5	5.8 E
Cys-	E- 07	E- 07	E- 07	E- 07	E- 07	0E- 07	3E- 07	E- 07	16-	/E- 07	0E- 10	9E-	3E- 07	9E- 07	9E- 08	4E- 07	9E- 08	E- 07
50	07	07	07	07	07	07	07	07	07	07	10	08	07	07	08	07	08	07
	3 73	3 16	3.01	1.08	1 91	17	48	39	15	21	49	11	21	13	1.0	3.0	11	58
Cvs-	E-	E-	E-	E-	E-	9E-	6E-	6E-	E-	7E-	E-	E-	5E-	3E-	2E-	8E-	1E-	E-
50	07	07	07	07	07	07	07	07	08	07	08	08	07	07	07	07	07	07
									-									
	3.66	2.98	2.74	8.76	1.83	1.6	4.7	4.1	4.5	3.4	-	2.9	2.3	1.3	3.4	3.2	1.2	-
Cys-	E-	E-	E-	E-	E-	5E-	6E-	7E-	E-	E-	1E-	3E-	5E-	4E-	2E-	8E-	1E-	6E-
50	07	07	07	08	07	07	07	07	08	07	08	08	07	07	08	07	07	07
											-	-			-			-
-	3.29	2.89	2.41	5.43	1.14	8.5	4.5	4.1	-	1.1	1.3	7.1	2.8	1.3	4.8	3.2	7.0	6.9
Cys-	E-	E-	E-	E-	E-	4E-	4E-	9E-	3E-	5E-	E-	E-	4E-	9E-	E-	3E-	8E-	E-
50	07	07	07	08	07	08	07	07	08	07	07	08	07	07	08	07	08	07
G	1.64	1.75	2.04	5.17	8.25	9.9	1.5	1.7	1.9	3.1	2.7	2.5	1.7	1.6	2.1	2.2	2.4	2.6
Cys-	E-	E-	E-	E-	E-	SE-	3E-	9E-	9E-	/E-	IE-	6E-	2E-	6E-	9E-	3E-	9E-	3E-
30	06	06	06	0/	0/	0/	06	06	06	00	06	06	06	00	00	00	00	00
	2 72	287	3 75	5 25	1 / 2	16	5 2	5 2	1.0	10	62	61	3.0	17	3 2	3.1	3 2	
Cvs-	2.75 F-	∠.07 F-	5.25 F-	5.25 F-	F-	1.0 8F-	5.2 6F-	5.5 5F-	8F-	1.9 7F-	0.2 F-	0.1 F-	3E-	1./ 9F-	5.2 F-	3E-	5.5 1F-	- 5F-
50	07	07	07	08	07	07	07	07	07	07	08	10	07	07	08	07	07	07

Table S1. Raw data used for generating LDA score plot shown in figure 10.

GSH-	3.57 E-	3.34 E-	3.4 E-	4.91 E-	1.19 E-	2.5 6E-	5.8 4E-	7.0 6E-	5.1 5E-	1.2 5E-	6.3 5E-	5.1 5E-	7.8 8E-	6.2 1E-	3.5 8E-	8.3 8E-	3.8 1E-	2.2 1E-
50	4.39	4.48	4.48	7.6	1.66	3.1	4.5	6.5	4.2	7.4	1.9	1.7	7.4	6.5	3.7	8.0	2.8	9.6
GSH- 50	E- 07	E- 07	E- 07	E- 08	E- 07	2E- 07	2E- 07	7E- 07	4E- 07	1E- 07	4E- 07	3E- 07	4E- 07	6E- 07	7E- 07	2E- 07	9E- 07	4E- 08
COLL	3.75	4.04	4.27	5.34	1.21	2.5	3.2	5.9	2.8	6.5	9.2	8.4	6.8	6.4	3.2	8.5	4.4	1.9
GSH- 50	E- 07	E- 07	E- 07	E- 08	E- 07	5E- 07	E- 07	6E- 07	9E- 07	6E- 07	2E- 08	8E- 08	6E- 07	5E- 07	9E- 07	3E- 07	E- 07	6E- 07
	3.01	3.5	4.00		1 1 5	26	23		20	6.4	15	- 0.5	71	7.0	28	7.0	15	1 8
GSH-	E-	E-	4.09 E-	5E-	E-	2.0 3E-	2.5 E-	6E-	4E-	5E-	2E-	9.5 Е-	3E-	3E-	2.8 6E-	4E-	4.5 5E-	3E-
50	07	07	07	08	07	07	07	07	07	07	09	09	07	07	07	07	07	07
	3.88	4.01	4.29	5.71	1.41	3.1	3.3	7.1	4.1	5.7	9.1	7.4	6.6	7.0	4.9	8.1	4.6	1.7
GSH- 50	E- 07	E- 07	E- 07	E- 08	E- 07	1E- 07	5E- 07	1E- 07	4E- 07	7E- 07	E- 08	E- 08	5E- 07	6E- 07	7E- 07	5E- 07	2E- 07	1E- 07
COLL	1.74	1.79	2.06	4.7 E	8.15 E	1.2	1.4	1.9	1.9 7E	3.5	3.1	2.8	2.0	2.1	2.6	2.7	2.8	2.9
50	D6	D6	D6	07	С- 07	2E- 06	8E- 06	/E- 06	/E- 06	4E- 06	06	/E- 06	4E- 06	9E- 06	/E- 06	4E- 06	/E- 06	/E- 06
GSH-	3.23 E-	3.32 E-	3.36 E-	4.64 E-	9.4 E-	2.1 3E-	3.3 2E-	8.5 3E-	4.9 5E-	9.3 5E-	1.4 85-	1.2 1E-	6.3 5E-	7.3 3E-	3.8 8E-	7.1 8E-	3.3 7E-	5.6 8E-
50	07	07	07	08	08	07	07	07	07	07	07	07	07	07	07	07	07	08
	7.5	5.29	5.57	3.31	3.16	2.6	4.9	3.1	1.9	8.2	4.8	4.6	3.3	2.4	1.2	2.8	5.8	- 1.4
Hcys-	E-	E-	E-	E-	E-	1E-	3E-	6E-	4E-	7E-	6E-	3E-	8E-	E-	6E-	4E-	9E-	E-
50	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	08	- 07
Harra	9.31	6.7	7.54 E	4.01	3.73	2.3	4.8 2E	3.2 2E	1.8	112	6.2	6.5	3.0 2E	2.9	1.6 E	4.2	1.6	9.6 E
50	E- 07	E- 07	E- 07	E- 07	E- 07	3E- 07	3E- 07	3E- 07	4E- 07	1E- 06	9E- 07	0E- 07	2E- 07	/E- 07	E- 07	8E- 07	1E- 07	E- 08
Heve	7.25 E-	5.31 E-	6.11 F-	4.14 E-	4.04 E-	2.6 1E-	7.1 8E-	4.7 85-	3.2 E-	8.9 1E-	5.1 85-	5.7 3E-	2.7 6E-	3.5 6E-	1.7 5E-	3.6 7E-	1.1 F-	- 2E-
50	07	07	07	07	07	07	07	07	07	07	07	07	07	01-	07	07	07	07
	8.04	5.98	6.56	4.08	4.17	2.6	3.8	2.8	1.6	9.0	4.8	5.4	1.6	3.6	2.9	2.5	3.6	- 3.4
Hcys-	E-	E-	E-	E-	E-	4E-	9E-	E-	1E-	8E-	2E-	4E-	3E-	9E-	5E-	5E-	6E-	E-
50	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	09	- 07
Heve	8.45 E-	6.11 F-	6.88 E-	4.1 E-	4.35 E-	2.6 2E-	3.2 3E-	2.4 5E-	1.4 85-	8.5 E-	3.6 7E-	4.2	3.0 2E-	2.9 7E-	1.6 E-	4.0	2.4 E-	1.3 E-
50	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07
Heys-	1.71 E-	1.58 E-	1.93 E-	7.14 E-	9.66 E-	1.3 4E-	2.1 4E-	2.0 8E-	1.9 5E-	3.4 9E-	2.9 2E-	2.8 5E-	1.4 6E-	1.6 7E-	1.8 4E-	2.3 E-	2.4 1E-	2.6 2E-
50	06	06	06	07	07	06	06	06	06	06	06	06	06	06	06	06	06	06
	8.58	6.11	7.49	3.53		2.0		7.8	4.9	5.8	2.1	3.5	-	3.3	1.5	4.0	1.1	- 3.4
Hcys-	E-	E-	E-	E-	4E-	7E-	1E-	9E-	3E-	6E-	7E-	7E-	5E-	9E-	3E-	5E-	3E-	E-
50	- 07	- 07	- 07	07	07	07	06	07	07	07	07	07	08	07	07	07	07	07
	2.1 E-	2.1 E-	1.6 E-	1.97 E-	1.85 E-	2.7 9E-	2.6 2E-	5.1 8E-	7.2 3E-	2.4 8E-	4.0	1.7 5E-	4.2 7E-	4.1 E-	3.7 3E-	7.7 4E-	5.7 E-	3.7 5E-
Cys 5	08	07	07	07	07	9E- 07	2E- 07	07	07	07	07	07	07	07	07	4E- 07	07	07
	-	- 2.3	-	2.11	1.57	2.6	2.3	4.4	5.5	4.9	5.9	2.5	1.4	1.7	1.5	7.4	5.5	2.9
	E-	E-	E-	E-	E-	7E-	4E-	E-	8E-	E-	E-	8E-	1E-	E-	4E-	6E-	8E-	9E-
Cys 5	- 08	07	- 07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07
	4.3	3.2 E	2.4	2.3	1.7	3.2	2.8	5.0	6.1	2.7	2.9	8.5 E	2.3	3.2	2.9	1.1	7.7	5.1
Cys 5	08	07	07	07	с- 07	0E- 07	/E- 07	07	4E- 07	с- 07	07	08	с- 07	9E- 07	9E- 07	2E- 06	4E- 07	07

Cys 5	- 2.6 E- 08	2E- 07	- 9.2 E- 08	1.53 E- 07	1.62 E- 08	1.4 8E- 07	2.3 7E- 07	4.6 2E- 07	5.7 1E- 07	3.3 3E- 07	1.8 3E- 07	- 1.8 E- 07	2.1 8E- 07	1.5 6E- 07	1.8 1E- 07	7.5 5E- 07	4.7 2E- 07	1.8 E- 07
Cys 5	- 2.2 E- 08	- 8.1 E- 08	5.8 E- 08	1.93 E- 07	6.01 E- 08	2.2 1E- 07	1.7 9E- 07	3.3 2E- 07	3.5 1E- 07	3.4 3E- 07	1.4 8E- 07	2.3 E- 07	2.3 2E- 07	2.0 8E- 07	2.8 E- 07	9.2 6E- 07	5.3 9E- 07	1.9 5E- 07
Cys 5	5.5 E- 08	- 2E- 07	- 5E- 08	1.71 E- 07	3.27 E- 08	1.7 5E- 07	2.3 4E- 07	4.4 E- 07	5.5 8E- 07	2.6 3E- 07	4.7 E- 08	3.3 E- 07	2.8 6E- 07	2.2 8E- 07	3.4 9E- 07	7.5 2E- 07	4.1 4E- 07	8.5 4E- 08
Cys 5	9.2 E- 08	2.9 E- 07	1.2 E- 07	1.49 E- 07	2.44 E- 08	2.1 2E- 07	1.1 5E- 07	2.7 8E- 07	3.0 8E- 07	2.9 4E- 07	1.2 8E- 08	- 4E- 07	2.4 4E- 07	2.6 8E- 07	4.4 8E- 07	9.1 4E- 07	4.9 E- 07	1.0 1E- 07
GSH 5	7.9 E- 08	3.3 E- 08	- 9.4 E- 08	1.87 E- 07	2.67 E- 07	3.6 9E- 07	2.3 5E- 07	4.6 1E- 07	3.9 3E- 07	9.0 7E- 07	7.0 8E- 07	5.8 E- 07	3.9 7E- 07	1.7 8E- 07	1.5 6E- 07	4.2 8E- 07	2.6 E- 07	1.8 1E- 07
GSH 5	2.28 E- 07	1.32 E- 07	1.08 E- 07	2.26 E- 07	3.4 E- 07	5.2 2E- 07	2.1 2E- 07	4.3 8E- 07	4.0 4E- 07	7.9 1E- 07	6.5 2E- 07	5.3 4E- 07	4.1 8E- 07	1.6 8E- 07	1.5 2E- 07	6.7 7E- 07	4.1 6E- 07	3.0 5E- 07
GSH 5	1.94 E- 07	9.64 E- 08	8.18 E- 08	1.69 E- 07	2.48 E- 07	3.4 5E- 07	1.6 2E- 07	4.1 1E- 07	3.9 8E- 07	7.0 3E- 07	5.6 4E- 07	4.7 4E- 07	4.4 3E- 07	1.7 E- 07	1.6 3E- 07	6.6 1E- 07	3.6 4E- 07	2.3 2E- 07
GSH 5	2.38 E- 07	1.53 E- 07	1.73 E- 07	1.79 E- 07	2.56 E- 07	2.8 E- 07	1.3 1E- 07	3.8 9E- 07	3.7 9E- 07	7.6 3E- 07	5.9 4E- 07	5.0 4E- 07	4.0 4E- 07	1.3 2E- 07	1.3 2E- 07	8.1 8E- 07	4.6 1E- 07	3.1 3E- 07
GSH 5	1.45 E- 07	1.04 E- 07	1.89 E- 07	1.56 E- 07	2.37 E- 07	3.0 4E- 07	1.1 E- 07	3.6 8E- 07	3.6 5E- 07	6.4 2E- 07	5.2 4E- 07	4.5 E- 07	2.5 5E- 07	5.0 7E- 08	I.I E- 07	8.3 1E- 07	4.4 1E- 07	2.7 8E- 07
GSH 5	8.55 E- 08	5.25 E- 08	1.47 E- 07	1.51 E- 07	2.29 E- 07	2.4 4E- 07	6.5 9E- 08	3.1 4E- 07	2.9 E- 07	7.7 8E- 07	5.8 E- 07	4.9 2E- 07	3.0 4E- 07	6.3 8E- 08	1.1 5E- 07	8.8 5E- 07	4.8 3E- 07	3.0 8E- 07
GSH 5	3.6 E- 08	5.58 E- 08	2.36 E- 07	1.61 E- 07	2.58 E- 07	3.2 3E- 07	3.9 E- 08	1.1 4E- 07	1.3 E- 07	7.6 4E- 07	5.1 9E- 07	4.3 9E- 07	3.4 1E- 07	1.5 8E- 07	2.9 3E- 07	9.7 7E- 07	5.1 E- 07	3.1 6E- 07
Hcys 5	1.9 E- 07	2.01 E- 07	2.05 E- 07	2.78 E- 08	4.09 E- 08	9.1 9E- 08	1.3 5E- 07	2.2 8E- 07	1.6 9E- 07	6.7 7E- 07	5.4 8E- 07	4.5 2E- 07	5.2 1E- 07	3.7 9E- 07	4E- 07	6.0 2E- 07	3.5 4E- 07	3.1 6E- 07
Hcys 5	3.55 E- 07	3.14 E- 07	2.53 E- 07	1.19 E- 07	1.83 E- 07	2.8 4E- 07	1.2 4E- 07	2.3 8E- 07	1.8 3E- 07	9.8 3E- 07	7.4 3E- 07	6.1 2E- 07	5.4 7E- 07	4.1 E- 07	4.7 1E- 07	E- 07	4.5 3E- 07	4.1 6E- 07
Hcys 5	E- 07	2.01 E- 07	2.03 E- 07	0.90 E- 08	E- 07	2.2 7E- 07	1.0 5E- 07	2.4 1E- 07	1.9 1E- 07	1.0 1E- 06	7.0 4E- 07	0.5 9E- 07	4.9 2E- 07	3.4 7E- 07	5.8 6E- 07	0.2 5E- 07	4.0 2E- 07	2E- 07
Hcys 5	E- 07	E- 07	E- 07	E- 07 8.82	E- 07	5E- 07	5E- 07	6E- 07	2.5 3E- 07	7E- 06	E- 07	9E- 07	2E- 07 4.6	6E- 07	9E- 07	4.8 2E- 07	4E- 07	2.6 1E- 07
Hcys 5	E- 07	E- 07 8 18	E- 07	E- 08 9.52	E- 07	8E- 07	E- 07	7E- 07	8E- 07	8E- 06	5E- 07	E- 07	9E- 07 4 0	7E- 07	8E- 07	3E- 07	E- 07	1E- 07
Hcys 5	E- 08 4 91	E- 08	E- 08	E- 08	E- 07 9.03	3E- 07	3E- 07	1E- 07	2.3 5E- 07	9E- 06	4E- 07 85	8E- 07	2E- 07	6E- 07	7E- 07	6E- 07	6E- 07	3E- 07
Hcys 5 Cys	E- 08 2.93	E- 08 5.86	E- 08 1.5	4E- 08 5.77	E- 08 3.05	3E- 07 4.5	1E- 07 6.6	9E- 07 9.2	3E- 07 7.9	5E- 06 8.5	4E- 07 6.5	E- 07 7.4	2E- 07 5.0	6E- 07 5.7	5E- 07 2.4	3E- 07 9.9	8E- 07 9.6	8E- 07 5.7

100	E- 07	E- 08	E- 07	E- 07	E- 07	2E- 07	5E- 07	4E- 07	5E- 07	8E- 07	2E- 07	7E- 07	4E- 07	8E- 07	1E- 07	2E- 07	4E- 07	7E- 07
	2.04	- 7 2	1.07	5 1	2 42	4.2	7.2	1.0	07	1.2	0.2	1 1	5.0	7.4	2.6	1.0	1 1	8.0
Cys	2.94 E-	7.2 E-	1.07 E-	5.1 E-	2.43 E-	4.2 E-	7.3 7E-	1.0 5E-	8.3 3E-	1.2 5E-	9.3 5E-	1.1 5E-	5.0 1E-	4E-	э.ө 9Е-	1.0 5E-	1.1 2E-	8.0 9E-
100	07	08	07	07	07	07	07	06	07	06	07	06	07	07	07	06	06	07
	2.33	1.4	7.75	3.82	1.3	2.9	1.0	1.3	1.0	1.1	8.5	1.1	3.9	5.5	2.4	1.1	1.1	9.3
100 Cys	E- 07	E- 07	E- 08	E- 07	E- 07	2E- 07	5E- 06	3E- 06	1E- 06	6E- 06	8E- 07	5E- 06	/E- 07	3E- 07	8E- 07	E- 06	9E- 06	1E- 07
	1 13	- 23	7 94	4 28	1 41	27	96	13	11	12	8 1	11	35	51	25	11	11	99
Cys	E-	E-	E-	E-	E-	E-	3E-	3E-	1E-	1E-	1E-	E-	E-	2E-	7E-	7E-	8E-	8E-
100	07	- 07	09	07	07	07	07	06	06	06	07	06	07	07	07	06	06	07
Cue	1.86 E	2.1 E	3.14 E	4.58 E	2.12 E	3.2 7E	8.1 5E	1.2 E	9.5 5E	9.7 7E	6.4 5E	9.9 7E	1.9 7E	5.6 0E	1.9 1E	9.8 0E	6.3 8E	5.9 5E
100	07	07	08	07	07	07	07	06	07	07	07	07	07	07	07	07	07	07
	2.48	- 1.6	7.42		1.67	2.8	7.1	1.1	8.8		7.2	1.1	5.7	5.2	1.3	1.0	1.0	8.9
Cys	E-	E- 07	E-	4E-	E-	7E-	3E-	3E-	2E-	1E-	8E-	5E-	7E-	3E-	8E-	6E-	1E- 06	4E-
100	07	-	-	07	07	07	07	00	07	00	07	00	08	07	07	00	00	07
Cvs	6.87 E-	3.1 E-	4.3 E-	2.51 E-	6.47 E-	2.2 4E-	7.1 9E-	1.1 9E-	9.3 2E-	1.1 1E-	6.1 3E-	8.9 6E-	- 1E-	4.0 3E-	4.7 3E-	6.2 3E-	1.9 2E-	9.1 6E-
100	08	07	08	07	08	07	07	06	07	06	07	07	07	07	08	07	07	08
GSH	7.34 E-	7.6 E-	6.83 E-	2.36 E-	4.33 E-	6.9 6E-	2.2 7E-	5.1 4E-	5.3 8E-	1.3 1E-	1.1 2E-	1.0 4E-	3.8 9E-	8.2 1E-	6.2 8E-	7.8 7E-	7.8 4E-	4.3 3E-
100	07	07	07	07	07	07	07	07	07	06	06	06	07	07	07	07	07	07
GSH	8.09 E-	9.47 E-	9.51 E-	2.44 E-	4.44 E-	7.3 2E-	4.2 1E-	8.4 4E-	7.8 8E-	1.4 4E-	1.2 2E-	7E-	5E-	9E-	о.о 7Е-	1.2 1E-	7E-	4.7 E-
100	07 9.01	07	07	07	07	07 64	07	07 9.6	07	06	06	06	$\frac{07}{24}$	07 69	07	06	06	07 62
GSH	E-	E-	E-	E-	E-	5E-	3E-	2E-	3E-	E-	E-	9E-	6E-	9E-	2E-	1E-	8E-	9E-
100	07	07 8.98	07 9.43	2.35	4.34	07 7.2	<u>07</u> 4.5	<u>07</u> 9.0	07 7.9	06	06	06	$\frac{07}{1.8}$	<u>07</u> 6.2	<u>07</u> 4.6	06	06 9.7	<u>07</u> 2.8
GSH	E-	E-	E-	E-	E-	6E-	E-	6E-	3E-	3E-	4E-	2E-	2E-	1E-	8E-	1E-	4E-	7E-
100	7.68	8.9	9.19	1.73	3.4	5.6	4.0	8.6	7.4	1.0	8.8	8.8	2.1	6.7	5.3	1.1	8.6	1.2
GSH 100	E- 07	E- 07	E- 07	E- 07	E- 07	5E- 07	3E- 07	2E- 07	1E- 07	5E- 06	E- 07	3E- 07	4E- 07	5E- 07	5E- 07	2E- 06	7E- 07	2E- 07
COL	7.34	8.3	8.85	1.85	3.51	5.6	4.5	9.5	7.6	1.0	9.5	9.8	1.1	5.7	5.0	1.9	1.2	3.5
GSH 100	E- 07	E- 07	E- 07	E- 07	E- 07	6E- 07	9E- 07	7E- 07	9E- 07	2E- 06	E- 07	9E- 07	5E- 07	6E- 07	4E- 07	E- 06	E- 06	7E- 07
	7 4 5	8 4 7	9.09	1 69	3 36	5.8	52	1.0	9.0	1.0	1.0	11	39	8.8	7.0	1.0	7.0	- 34
GSH	E-	E-	E-	E-	E-	9E-	2E-	7E-	1E-	8E-	6E-	7E-	8E-	E-	8E-	4E-	8E-	E-
100	07	07	07	07	07	07	07	06	07	06	06	06	07	07	07	06	07	- 08
Heve	9.8 E-	8.59 E-	9.85 E-	9.82 E-	9.51 E-	1.0 8E-	3.8 8E-	7.1 95-	7.8 7E-	1.9 1E-	1.3 2E-	1.2 4E-	4.6 8E-	9.5 8E-	7.9 1E-	1.4 3E-	3.5 1E-	1.8 E-
100	07	07	07	07	07	06	07	07	07	06	06	06	07	07	07	06	07	07
Hevs	1.04 E-	8.87 E-	1.03 E-	1.24 E-	1.24 E-	1.3 1E-	5.5 3E-	1E-	1.0 8E-	1.8 E-	1.2 5E-	1.2 2E-	5.1 6E-	1.0 9E-	9.6 1E-	1.8 9E-	6.0 1E-	7.9 3E-
100	06	07	06	06	06	06	07	06	06	06	06	06	07	06	07	06	07	08
	1.07	9.15	1.07	1.2	1.21	1.2	5.4	9.9	1.0	1.5	9.7	9.3	6.0	1.2	1.0	1.7	3.6	- 1.3
Hcys	E-	E-	E-	E-	E-	6E-	3E-	2E-	9E-	3E-	8E-	3E-	2E-	3E-	6E-	7E-	6E-	E-
Hcys	1.15	9.74	1.13	1.16	1.22	1.2	6.7	1.2	1.2	1.6	1.0	1.0	4.9	1.2	1.0	2.1	7.5	1.6
100	E-	E-	E-	E-	E-	7E-	8E-	3E-	6E-	E-	5E-	2E-	8E-	2E-	5E-	8E-	1E-	8E-

	06	07	06	06	06	06	07	06	06	06	06	06	07	06	06	06	07	07
																		-
	1.15	9.83	1.14	1.07	1.14	1.1	6.1	1.1	1.1	1.4	8.8	8.8	4.1	1.1	9.4	1.8	5.1	6.4
Hcys	E-	E-	E-	E-	E-	9E-	4E-	1E-	7E-	E-	9E-	1E-	8E-	1E-	1E-	8E-	3E-	E-
100	06	07	06	06	06	06	07	06	06	06	07	07	07	06	07	06	07	08
																		-
	1.18	1.01	1.18	1.09	1.19	1.2	6.2	1.1	1.2	1.6	1.0	1.0	4.9	1.1	1.0	1.7	2.6	2.6
Hcys	E-	E-	E-	E-	E-	4E-	E-	9E-	4E-	1E-	4E-	2E-	3E-	3E-	2E-	8E-	2E-	E-
100	06	06	06	06	06	06	07	06	06	06	06	06	07	06	06	06	07	07
		8.44		1.08	1.2	1.2	6.3	1.1	1.2	1.5	9.4	8.8	3.6	1.1	9.6	1.8	5.1	-
Hcys	1E-	E-	1E-	E-	E-	E-	4E-	8E-	3E-	4E-	7E-	4E-	E-	E-	7E-	8E-	6E-	7E-
100	06	07	06	06	06	06	07	06	06	06	07	07	07	06	07	06	07	08

Table S2. Raw data used for generating LDA score plot shown in figure 11b.

Electr ode		CuPc			MnPc		GO-	-CuPc-I	PDA	rGO	-CuPc-	PDA	GO-	MnPc-l	PDA	rGO·	-MnPc-	PDA
Repilc ates	380 mV	480 mV	580 mV															
	1.6	1.4	1.5	1.4	2.4	3.62	2.02	3.76	6.3	5.14	6.93	3.36	5.06	1.73	1.75	8.75	4.57	3.05
	8E-	3E-	5E-	3E-	5E-	E-												
A	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07
	2.5	4.5	1.8	1.7	2.6	4.76	1.72	3.79	4.04	7.61	5.85	5.43	5.26	1.89	1.16	8.32	4.64	3.16
	8E-	1E-	2E-	9E-	3E-	E-												
A	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07
	1.2 5E	9.5 9E	1.5 1E	1.2 E	2.5 1E	5.41 E	1.54 E	3.5/ E	3.98 E	/.14 E	5.43 E	5.19 E	5.06 E	1.4/ E	1.51 E	5./ E	4.61 E	3.13 E
٨	3E- 07	0E- 08	1E- 07	E- 07	07	07	D6	07	D7	07	07	D8	07	07	07	07	07	07
Π	07	00	07	07	07	07	00	07	07	07	07	00	07	07	07	07	07	07
	2.0	-	41	29	17	3 92	5.04	1 25	1 44	8 77	641	9 97	3 74	5 95	2.07	9 89	7 00	5 91
	2E-	2E-	E-	7E-	8E-	E-												
В	07	07	07	07	07	07	07	06	06	07	07	07	07	07	07	07	07	07
		-																
	2.3	9.0	3.2	3.8	1.9	3.7	5.25	1.15	1.47	1.12	6.28	1.15	3.77	4.23	1.33	1.06	1.02	8.95
	8E-	6E-	3E-	4E-	7E-	E-												
В	08	08	07	07	07	07	07	06	06	06	07	06	07	07	07	06	06	07
		-							• • -			0.07						1 0 0
	2.5	3.6	7.5 (F	2.1	5.5	3.27	5.74	1.49	2.07	1.23	7.13	8.96	1.02	5.54	3.02	6.23	1.26	1.00
D	1E- 07	E- 07	0E-	/E- 07	5E- 07	E-	E- 07											
D	07	07	07	07	07	07	07	00	00	00	07	07	07	07	08	07	07	07
	82	74	59	46	42	2 51	4 4 8	3.02	1 48	8.08		5.00	2 38	2 42	1 14	2 77	1 1 4	53
	7E-	E-	4E-	9E-	9E-	E-	E-	E-	E-	E-	6E-	E-						
С	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	08	07	07
																		-
	8.0	7.7	5.1	4.8	4.7	2.7	3.8	2.91	1.8	9.03	5.14	4.85	3.24	2.4	2.69	2.93	1.2	5.8
	1E-	8E-	2E-	1E-	3E-	E-												
С	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07
																		-
	7.4	6.2	6.1	4.2	4.1	2.27	4.06	4.91	2.45	8.61	4.46	4.25	3.1	2.75	1.03	3.7	9.02	5.5
C	4E-	2E-	E- 07	6E-	2E- 07	E-	E- 07	E-	E-	E-	E- 07							
U	0/	07	07	07	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	0/	08	07

DI	6.1	6.5	4.6	4.3	8.3	9.61	6.36	7.57	8.73	1.01	1.13	9.01	9.71	1.07	1.72	1.22	1.48	1.16
Plasm	2E- 07	3E- 07	1E- 07	6E- 07	7E- 07	E-	E- 07	E- 07	E- 07	E- 06	E- 06	E- 07	E- 07	E- 06	E- 06	E- 06	E- 06	E- 06
<u>u-1</u>	8.1	7.8	5.9	3.9	7.5	1.02	9.83	1.18	1.18	1.4	1.38	1.13	1.35	1.41	1.91	1.72	1.99	1.54
Plasm	2E-	5E-	5E-	E-	2E-	E-	E-	Е-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
a-1	07	07	07	07	07	06	07	06	06	06	06	06	06	06	06	06	06	06
Diama	9.0	7.9	6.3	4.5 E	8.3	1.08	1.03 E	1.25 E	1.2 E	1.46	1.36	1.12 E	1.51	1.62 E	2.19 E	1.8 E	2.09	1.58 E
a-1	4E- 07	9E- 07	4E- 07	E- 07	8E- 07	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06
<u>u 1</u>	9.2	7.9	6.4	3.9	7.5	9.78	9.68	1.2	1.16	1.45	1.38	1.15	1.37	1.48	1.93	1.88	2.17	1.63
Plasm	4E-	4E-	6E-	7E-	6E-	E-	E-	Е-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
a-1	07	07	07	07	07	07	07	06	06	06	06	06	06	06	06	06	06	06
Dlagma	9.4	7.4 E	5.0 2E	4.0	7.8 4E	1.02	9.99 E	1.29 E	1.26 E	1.44 E	1.43	1.24 E	1.34	I.5	26	1.88	2.21 E	1.65 E
a-1	07	с- 07	2E- 07	0E- 07	4E- 07	06	07	D6	06	06	06	06	06	06	2E- 06	06	D6	D6
	1.3	1.4	1.7	6.6	1.0	1.29	1.32	1.68	1.74	2.25	2.13	2.06	1.61	1.77	2.25	3.25	3.51	3.61
Plasm	6E-	4E-	4E-	5E-	3E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
a-1	06	06	06	07	06	06	06	06	06	06	06	06	06	06	06	06	06	06
Plasm	8.5 7E-	6.9 2E-	5.0 8E-	4E-	/.9 8E-	1.02 E-	9.52 E-	1.28 E-	1.22 E-	1.56 E-	1.45 E-	1.29 E-	1.38 E-	1.59 E-	2.16 E-	1.8 F-	1./9 E-	1.3 E-
a-1	07	07	07	07	07	06	07	06	06	06	06	06	06	06	06	06	06	06
									-		-	-			-		-	-
	3.9	3.0	2.6	9.6	1.9	1.99	4.86	3.96	1.5	2.04	6.4	3.6	3.1		1.8	1.56	5.2	4.9
Cys-	1E-	2E-	1E-	4E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	1E-	E-	E-	E-	E-
50	0/	07	0/	08	0/	0/	0/	0/	08	0/	08	08	0/	0/	0/	0/	08	0/
	3.7	2.8	1.9	2.3	3.2	2.96	8.25	6.8	3.01	2.67	3.06	3.39	2.93	1.69	9.09	2.24	1.59	5.8
Cys-	8E-	7E-	9E-	1E-	6E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
50	07	07	07	07	07	07	07	07	07	07	10	08	07	07	08	07	08	07
	27	2.1	2.0	1.0	1.0	1 70	100	2.00	-	2.17	-	-	2.15	1 22	1.02	2.00	1 1 1	-
Cvs-	3./ 3E-	3.1 6E-	3.0 1E-	1.0 8E-	1.9 1E-	I./9 F-	4.86 F-	3.96 F-	1.5 F-	2.17	4.9 F-	1.1 F-	2.15 F-	1.33 F-	1.02 F-	5.08 F-	1.11 F-	5.8 F-
50	07	07	07	07	07	07	07	07	08	07	08	08	07	07	07	07	07	07
									-									
0	3.6	2.9	2.7	8.7	1.8	1.65	4.76	4.17 E	4.5	3.4	-	2.93	2.35	1.34	3.42	3.28	1.21	- (F
Cys-	6E- 07	8E- 07	4E- 07	6E- 08	3E- 07	E-	E- 07	E- 07	E- 08	E-	1E- 08	E- 08	E-	E- 07	E- 08	E-	E- 07	6E- 07
	07	07	07	00	07	07	07	07	00	07	-	-	07	07	-	07	07	-
	3.2	2.8	2.4	5.4	1.1	8.54	4.54	4.19	-	1.15	1.3	7.1	2.84	1.39	4.8	3.23	7.08	6.9
Cys-	9E-	9E-	1E-	3E-	4E-	E-	E-	E-	3E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
50	0/	07	0/	08	07	08	0/	07	1.00	$\frac{0}{217}$	$\frac{0}{271}$	2 56	$\frac{07}{1.72}$	0/	2 10	$\frac{0}{2}$	2 40	$\frac{0}{262}$
Cvs-	4E-	1.7 5E-	2.0 4E-	7E-	0.2 5E-	9.95 E-	1.55 E-	1.79 E-	1.99 E-	5.17 E-	2.71 E-	2.30 E-	1.72 E-	1.00 E-	2.19 E-	E-	2.49 E-	2.05 E-
50	06	06	06	07	07	07	06	06	06	06	06	06	06	06	06	06	06	06
											-	-						
Crea	2.7	2.8	3.2	5.2	1.4	1.68	5.26	5.35	1.08	1.97	6.2	6.1	3.03	1.79	3.2	3.13	3.31	- -
Cys-	3E- 07	/E- 07	5E- 07	5E- 08	3E- 07	E-	E- 07	E- 07	E- 07	E-	E- 08	E- 10	E- 07	E- 07	E- 08	E-	E- 07	5E- 07
	3.5	3.3	3.4	4.9	1.1	2.56	5.84	7.06	5.15	1.25	6.35	5.15	7.88	6.21	3.58	8.38	3.81	2.21
GSH-	7E-	4E-	E-	1E-	9E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
50	07	07	07	08	07	07	07	07	07	06	07	07	07	07	07	07	07	07
COLL	4.3	4.4	4.4	7.6 E	1.6	3.12	4.52	6.57	4.24	7.41	1.94	1.73	7.44	6.56	3.77	8.02	2.89	9.64
50	9E- 07	8E- 07	δE- 07	E- 08	0E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 08
- 50	3.7	4.0	4.2	5.3	1.2	2.55	3.2	5.96	2.89	6.56	9.22	8.48	6.86	6.45	3.29	8.53	4.4	1.96
GSH-	5E-	4E-	7E-	4E-	1E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
50	07	07	07	08	07	07	07	07	07	07	08	08	07	07	07	07	07	07
	20	25	4.0		1 1	262	2.2		2.04	6 15	1.50	-	7 1 2	7.02	200	7.04	155	1 02
GSH-	5.0 1F-	3.3 F-	4.0 9F-	5E-	1.1 5E-	2.03 F-	∠.3 F-	6F-	2.94 F-	0.45 F-	1.52 F-	9.3 F-	7.13 F-	7.05 F-	∠.80 F-	/.94 F-	4.33 F-	1.83 F-
50	07	07	07	08	07	07	07	07	07	07	09	09	07	07	07	07	07	07

GSH-	3.8 8E- 07	4.0 1E- 07	4.2 9E- 07	5.7 1E- 08	1.4 1E- 07	3.11 E- 07	3.35 E- 07	7.11 E- 07	4.14 E- 07	5.77 E- 07	9.1 E- 08	7.4 E-	6.65 E- 07	7.06 E- 07	4.97 E- 07	8.15 E- 07	4.62 E- 07	1.71 E- 07
	1.7	1.7	2.0	4.7	8.1	1.22	1.48	1.97	1.97	3.54	3.11	2.87	2.04	2.19	2.67	2.74	2.87	2.97
GSH- 50	4E- 06	9E- 06	6E- 06	E- 07	5E- 07	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06	E- 06
CSU	3.2 2E	3.3 2E	3.3	4.6	9.4 E	2.13 E	3.32	8.53 E	4.95	9.35 E	1.48 E	1.21 E	6.35	7.33	3.88	7.18 E	3.37 E	5.68 E
50	07	2E- 07	0E- 07	4E- 08	С- 08	D7	07	с- 07	07	07	D7	D7	07	07	07	D7	с- 07	С- 08
	7.5	5 2	5.5	2 2	2 1	2.61	1 03	3 16	1.0/	8 27	186	1.63	2.28	24	1.26	281	5 80	- 1 /
Hcys-	E-	9E-	7E-	1E-	6E-	E-	ч.95 Е-	E-	E-	E-	ч.80 Е-	E-	E-	E-	E-	2.04 E-	5.87 E-	E-
50	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	08	07
	9.3	6.7	7.5	4.0	3.7	2.33	4.83	3.23	1.84		6.29	6.56	3.02	2.97	1.6	4.28	1.61	9.6
Hcys-	1E- 07	E- 07	4E- 07	1E- 07	3E- 07	E- 07	E- 07	E- 07	E- 07	1E- 06	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 08
	7.2	5.3	6.1	4.1	4.0	2.61	7.18	4.78	3.2	8.91	5.18	5.73	2.76	3.56	1.75	3.67	1.1	-
Hcys- 50	5E- 07	1E- 07	1E- 07	4E- 07	4E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	2E- 07
		5.0		1.0	4.1	0.04	2.00	2.0	1.(1	0.00	4.00	5.44	1.0	2.00	2.05	0.55	2.00	-
Hcys-	8.0 4E-	5.9 8E-	6.5 6E-	4.0 8E-	4.1 7E-	2.64 E-	3.89 E-	2.8 E-	1.61 E-	9.08 E-	4.82 E-	5.44 E-	1.63 E-	3.69 E-	2.95 E-	2.55 E-	3.66 E-	3.4 E-
50	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	09	07
	8.4	6.1	6.8	4.1	4.3	2.62	3.23	2.45	1.48	8.5	3.67	4.21	3.02	2.97	1.6	4.05	2.4	1.3
Hcys-	5E-	1E- 07	8E-	E- 07	5E-	E- 07	E-	E- 07	E-	E-	E- 07	E-	E-	E-	E-	E- 07	E- 07	E- 07
	1.7	1.5	1.9	7.1	9.6	1.34	2.14	2.08	1.95	3.49	2.92	2.85	1.46	1.67	1.84	2.3	2.41	2.62
Hcys-	1E- 06	8E- 06	3E-	4E- 07	6E- 07	E- 06	E- 06	E- 06	E-	E-	E- 06	E-	E-	E-	E-	E- 06	E- 06	E- 06
- 50		00	00	07	07	00	00	00	00	00	00			00		00	00	-
Heys-	8.5 8E-	6.1 1E-	7.4 9E-	3.5 3E-	4E-	2.07 E-	1E-	7.89 E-	4.93 E-	5.86 E-	2.17 E-	3.57 E-	- 5E-	3.39 E-	1.53 E-	4.05 E-	1.13 E-	3.4 E-
50	07	07	07	07	07	07	06	07	07	07	07	07	08	07	07	07	07	07
	- 2.1	- 2.1	- 1.6	1.9	1.8	2.79	2.62	5.18	7.23	2.48	4.05	1.75	4.27	4.1	3.73	7.74	5.7	3.75
	E-	E-	E-	7E-	5E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
Cys 5	- 08	- 07	- 07	07	07	07	07	07	07	07	07	0/	07	07	07	07	07	07
	1.1 E	2.3 E	1.7 E	2.1	1.5 7E	2.67 E	2.34	4.4 E	5.58	4.9	5.9 E	2.58	1.41 E	1.7 E	1.54	7.46 E	5.58 E	2.99 E
Cys 5	08	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07
	- 43	- 32	- 24	23	17	3.26	2.87	5.07	6 14	27	2.98	- 85	23	3 29	2 99	1 12	7 74	5 13
	E-	Б-	E-	E-	E-	E-	E-	E-	E-	E-	E-							
Cys 5	- 08	07	07	07	07	07	07	07	07	07	07	- 08	07	07	07	06	07	07
	2.6	-	9.2	1.5	1.6	1.48	2.37	4.62	5.71	3.33	1.83	1.8	2.18	1.56	1.81	7.55	4.72	1.8
Cvs 5	E- 08	2E- 07	E- 08	3E- 07	2E- 08	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07
	-	-	5.0	1.0	()	2.21	1.70		2.51	2.42	1 40	-	2.22	2.00	2.0	0.20	5.20	1.05
	2.2 E-	8.1 E-	э.8 Е-	1.9 3E-	6.0 1E-	2.21 E-	1.79 E-	3.32 E-	5.51 E-	5.43 E-	1.48 E-	2.3 E-	2.32 E-	2.08 E-	2.8 E-	9.26 E-	5.39 E-	1.95 E-
Cys 5	08	08	08	07	08	07	07	07	07	07	07	07	07	07	07	07	07	07
	5.5	-	-	1.7	3.2	1.75	2.34	4.4	5.58	2.63	4.7	3.3	2.86	2.28	3.49	7.52	4.14	8.54
Cvs 5	E-	2E- 07	5E- 08	1E- 07	7E- 08	E- 07	E- 07	E- 07	E- 07	E- 07	E- 08	E- 07	E- 07	E- 07	E- 07	E- 07	E- 07	E- 08
	-	-	-	1.4	2.4	2.12	1.15	2.78	3.08	2.94	1.28	-	2.44	2.68	4.48	9.14	4.9	1.01
Cys 5	9.2	2.9	1.2	9E-	4E-	Е-	E-	Е-	E-	E-	Е-	4E-	E-	E-	E-	Е-	E-	E-

	E-	E-	E-	07	08	07	07	07	07	07	08	07	07	07	07	07	07	07
	08	- 07	- 07															
	7.9	3.3	9.4	1.8	2.6	3.69	2.35	4.61	3.93	9.07	7.08	5.8	3.97	1.78	1.56	4.28	2.6	1.81
GSH	E-	E-	E-	7E-	7E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
5	08	08	08	07	0/	5 22	$\frac{07}{212}$	07	07	7.01	6.52	5 2 4	07	07	07	677	07	2.05
GSH	8E-	1.5 2E-	1.0 8E-	2.2 6E-	5.4 E-	5.22 E-	2.12 E-	4.30 E-	4.04 E-	F-	0.52 E-	5.54 E-	4.10 E-	1.00 E-	E-	E-	4.10 E-	5.05 E-
5	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07
	1.9	9.6	8.1	1.6	2.4	3.45	1.62	4.11	3.98	7.03	5.64	4.74	4.43	1.7	1.63	6.61	3.64	2.32
GSH	4E-	4E-	8E-	9E-	8E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
3	23	1.5	1.7	17	2.5	$\frac{0}{28}$	1 31	3.80	3 70	7.63	5.9/	5.04	4.04	1 32	1 32	818	0/	3 13
GSH	8E-	3E-	3E-	9E-	6E-	E-	E-	E-	E-	E-	E-	5.04 E-	ч.04 Е-	E-	E-	E-		E-
5	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07
	1.4	1.0	1.8	1.5	2.3	3.04	1.1	3.68	3.65	6.42	5.24	4.5	2.55	5.07	1.1	8.31	4.41	2.78
GSH	5E-	4E-	9E-	6E-	7E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
3	85	5 2	0/	0/	22	$\frac{0}{244}$	6 59	3 14	29	7 78	5.8	4 92	3.04	6 38	0/	8.85	4 83	3.08
GSH	5E-	5E-	7E-	1E-	9E-	E-	E-	E-	E-	E-	E-	ч.92 Е-	E-	0.50 E-	E-	E-	ч.65 Е-	Б.00 Е-
5	08	08	07	07	07	07	08	07	07	07	07	07	07	08	07	07	07	07
							-											
COLL	3.6	5.5 9E	2.3	1.6	2.5	3.23	3.9	1.14	1.3 E	7.64	5.19 E	4.39 E	3.41	1.58	2.93	9.77	5.1	3.16
5	E- 08	8E- 08	0E- 07	1E- 07	8E- 07	E- 07	E- 08	E- 07	E- 07	E- 07	E- 07							
	1.9	2.0	2.0	2.7	4.0	9.19	1.35	2.28	1.69	6.77	5.48	4.52	5.21	3.79	07	6.02	3.54	3.16
Hcys	E-	1E-	5E-	8E-	9E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	4E-	E-	E-	E-
5	07	07	07	08	08	08	07	07	07	07	07	07	07	07	07	07	07	07
Have	3.5	3.1	2.5 2E	1.1 0E	1.8 2E	2.84	1.24	2.38	1.83 E	9.83	7.43	6.12 E	5.47	4.1 E	4.71	7.7 E	4.53	4.16 E
5	07	4E- 07	5E- 07	9E- 07	3E- 07	07	07	07	D7	07	67	E- 07	D7	D7	07	07	E- 07	E- 07
	1.9	2.0	2.0	6.9	1.2	2.27	1.05	2.41	1.91	1.01	7.64	6.39	4.92	3.47	3.86	6.25	4.02	3.72
Hcys	E-	1E-	5E-	6E-	4E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
5	07	07	07	08	07	07	07	07	07	06	07	07	07	07	07	07	07	07
Heve	2.7 7E-	2.7 5E-	2.1 E-	1.2 1E-	2.0 4E-	3.85 E-	1.15 E-	3.16 F-	2.53 E-	1.07	7.9 E-	6.59 E-	6.32 E-	4.46 E-	4.99	4.82	3.14 E-	2.81 E-
5	07	07	07	07	07	07	07	07	07	06	07	07	07	07		07	07	07
	2.6	3.0	2.5	8.8	1.6	3.18	1.3	3.07	2.18	1.08	8.05	6.8	4.69	2.97	2.78	5.93	3.2	2.61
Hcys	7E-	9E-	3E-	2E-	6E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
5	07	07	07	08	07	07	07	07	07	06	07	07	07	07	07	07	07	07
Hevs	0.0 4E-	8.1 85-	3.4 8E-	9.3 2E-	1./ 4F-	5.15 F-	1.55 F-	2.91 F-	2.33 F-	1.09 F-	8.04 F-	0.88 F-	4.02 F-	2.00 E-	5.17 F-	3.80 F-	2.30 E-	2.43 E-
5	08	08	08	08	07	07	07	07	07	06	07	07	07	07	07	07	07	07
	4.9	6.5	3.6		9.0	1.23	1.51	3.59	2.83	1.15	8.54	7.5	3.92	2.06	1.15	5.13	2.88	2.58
Hcys	1E-	E-	3E-	4E-	3E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
5	2.0	<u> 08</u> 5.8	08	08 5.7	2.0	0/	6.65	0/	7.05	<u> </u>	6.52	7 47	5.04	5 78	$\frac{0}{241}$	0/	0/	5 77
Cvs	2.9 3E-	6E-	г.э Е-	7E-	5E-	4.52 E-	E-	9.24 E-	E-	6.56 E-	0.52 E-	7.47 E-	5.04 E-	5.78 E-	E-	E-	9.04 E-	5.77 E-
100	07	08	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07	07
		-																
	2.9	7.2	1.0	5.1	2.4	4.2	7.37	1.05	8.33	1.25	9.35	1.15	5.61	7.44	3.69	1.05	1.12	8.09
100	4E- 07	E- 08	/E- 07	E- 07	3E- 07	E-	E- 07	E- 06	E- 07	E- 06	E- 07	E- 06	E- 07	E- 07	E-	E- 06	E- 06	E- 07
100	07	-			07									0,				
	2.3	1.4	7.7	3.8	1.3	2.92	1.05	1.33	1.01	1.16	8.58	1.15	3.97	5.53	2.48	1.1	1.19	9.31
Cys	3E-	E-	5E-	2E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
100	07	07	08	07	07	07	06	06	06	06	07	06	07	07	07	06	06	07
	11	23	79	42	14	2.7	9.63	1.33	1.11	1.21	8.11	11	3.5	5.12	2.57	1.17	1.18	9.98
Cys	3E-	E-	4E-	8E-	1E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-	E-
100	07	07	09	07	07	07	07	06	06	06	07	06	07	07	07	06	06	07

Cys	1.8 6E-	- 2.1 E-	3.1 4E-	4.5 8E-	2.1 2E-	3.27 E-	8.15 E-	1.2 E-	9.55 E-	9.77 E-	6.45 E-	9.97 E-	1.97 E-	5.69 E-	1.91 E-	9.89 E-	6.38 E-	5.95 E-
100	07	07	08	07	07	07	07	06	07	07	07	07	07	07	07	07	07	07
Cys 100	2.4 8E- 07	- 1.6 E- 07	7.4 2E- 08	4E- 07	1.6 7E- 07	2.87 E- 07	7.13 E- 07	1.13 E- 06	8.82 E- 07	1E- 06	7.28 E- 07	1.15 E- 06	5.77 E- 08	5.23 E- 07	1.38 E- 07	1.06 E- 06	1.01 E- 06	8.94 E- 07
Cys 100	6.8 7E- 08	- 3.1 E- 07	- 4.3 E- 08	2.5 1E- 07	6.4 7E- 08	2.24 E- 07	7.19 E- 07	1.19 E- 06	9.32 E- 07	1.11 E- 06	6.13 E- 07	8.96 E- 07	- 1E- 07	4.03 E- 07	4.73 E- 08	6.23 E- 07	1.92 E- 07	9.16 E- 08
GSH 100	7.3 4E- 07	7.6 E- 07	6.8 3E- 07	2.3 6E- 07	4.3 3E- 07	6.96 E- 07	2.27 E- 07	5.14 E- 07	5.38 E- 07	1.31 E- 06	1.12 E- 06	1.04 E- 06	3.89 E- 07	8.21 E- 07	6.28 E- 07	7.87 E- 07	7.84 E- 07	4.33 E- 07
GSH 100	8.6 9E- 07	9.4 7E- 07	9.3 1E- 07	2.4 4E- 07	4.4 4E- 07	7.52 E- 07	4.21 E- 07	8.44 E- 07	7.88 E- 07	1.44 E- 06	1.22 E- 06	1.17 E- 06	3.05 E- 07	7.89 E- 07	6.67 E- 07	1.21 E- 06	1.07 E- 06	4.7 E- 07
GSH 100	9.0 1E- 07 7.9	E- 07	2E- 07	2E- 07	4E- 07 4 3	0.43 E- 07 7.26	E- 07 4 5	9.02 E- 07	E- 07 7 93	E- 06	E- 06	E- 06	E- 07	E- 07	E- 07 4 68	E- 06	E- 06 9 74	E- 07
GSH 100	9E- 07	8E- 07	3E- 07	5E- 07	4E- 07 3 4	E- 07	E- 07	E- 07 8.62	E- 07 7 41	E- 06	E- 06	E- 06	E- 07	E- 07	E- 07	E- 06	E- 07 8.67	E- 07
GSH 100	8E- 07	E- 07	9E- 07	3E- 07	E- 07	E- 07	E- 07	E- 07	7.41 E- 07	E- 06	E- 07	E- 07	E- 07	E- 07	E- 07	E- 06	E- 07	E- 07
GSH 100	4E- 07	E- 07	5E- 07	5E- 07	1E- 07	E- 07	E- 07	E- 07	E- 07	E- 06	E- 07	E- 07	E- 07	E- 07	E- 07	E- 06	E- 06	E- 07
GSH 100	7.4 5E- 07	8.4 7E- 07	9.0 9E- 07	1.6 9E- 07	3.3 6E- 07	5.89 E- 07	5.22 E- 07	1.07 E- 06	9.01 E- 07	1.08 E- 06	1.06 E- 06	1.17 E- 06	3.98 E- 07	8.8 E- 07	7.08 E- 07	1.04 E- 06	7.08 E- 07	3.4 E- 08
Hcys 100	9.8 E- 07	8.5 9E- 07	9.8 5E- 07	9.8 2E- 07	9.5 1E- 07	1.08 E- 06	3.88 E- 07	7.19 E- 07	7.87 E- 07	1.91 E- 06	1.32 E- 06	1.24 E- 06	4.68 E- 07	9.58 E- 07	7.91 E- 07	1.43 E- 06	3.51 E- 07	- 1.8 E- 07
Hcys 100	1.0 4E- 06	8.8 7E- 07	1.0 3E- 06	1.2 4E- 06	1.2 4E- 06	1.31 E- 06	5.53 E- 07	1E- 06	1.08 E- 06	1.8 E- 06	1.25 E- 06	1.22 E- 06	5.16 E- 07	1.09 E- 06	9.61 E- 07	1.89 E- 06	6.01 E- 07	7.93 E- 08
Hcys 100	1.0 7E- 06	9.1 5E- 07	1.0 7E- 06	1.2 E- 06	1.2 1E- 06	1.26 E- 06	5.43 E- 07	9.92 E- 07	1.09 E- 06	1.53 E- 06	9.78 E- 07	9.33 E- 07	6.02 E- 07	1.23 E- 06	1.06 E- 06	1.77 E- 06	3.66 E- 07	- 1.3 E- 07
Hcys 100	1.1 5E- 06	9.7 4E- 07	1.1 3E- 06	1.1 6E- 06	1.2 2E- 06	1.27 E- 06	6.78 E- 07	1.23 E- 06	1.26 E- 06	1.6 E- 06	1.05 E- 06	1.02 E- 06	4.98 E- 07	1.22 E- 06	1.05 E- 06	2.18 E- 06	7.51 E- 07	1.68 E- 07
Hcys 100	1.1 5E- 06	9.8 3E- 07	1.1 4E- 06	1.0 7E- 06	1.1 4E- 06	1.19 E- 06	6.14 E- 07	1.11 E- 06	1.17 E- 06	1.4 E- 06	8.89 E- 07	8.81 E- 07	4.18 E- 07	1.11 E- 06	9.41 E- 07	1.88 E- 06	5.13 E- 07	- 6.4 E- 08
Hcys 100	1.1 8E- 06	1.0 1E- 06	1.1 8E- 06	1.0 9E- 06	1.1 9E- 06	1.24 E- 06	6.2 E- 07	1.19 E- 06	1.24 E- 06	1.61 E- 06	1.04 E- 06	1.02 E- 06	4.93 E- 07	1.13 E- 06	1.02 E- 06	1.78 E- 06	2.62 E- 07	- 2.6 E- 07
Hcys 100	1E- 06	8.4 4E- 07	1E- 06	1.0 8E- 06	1.2 E- 06	1.2 E- 06	6.34 E- 07	1.18 E- 06	1.23 E- 06	1.54 E- 06	9.47 E- 07	8.84 E- 07	3.6 E- 07	1.1 E- 06	9.67 E- 07	1.88 E- 06	5.16 E- 07	- 7E- 08

Table S3. Shows the oxidation peak potentials of different biothiols in presence of RIs. Each voltammogram shows peak currents at two potentials. Comparison of the data shows, three values (0.38, 0.48, and 0.48 V) are qualified for the LDA and PLS-R process.

Electrode	Analyte	Potential 1 (mV)	Potential 2 (mV)
	Cys	0.41	0.57
CuPc (1')	GSH	0.41	0.57
	Hcys	0.38	0.58
	Cys	0.38	0.48
MnPc (2')	GSH	0.38	0.48
	Hcys	0.38	0.44
	Cys	0.46	0.57
GO-CuPc-PDA (3')	GSH	0.48	0.60
	Hcys	0.39	-
	Cys	0.38	0.57
GO-MnPc-PDA (4')	GSH	0.42	0.6
	Hcys	0.41	0.64
	Cys	0.37	0.46
rGO-CuPc-PDA (5')	GSH	0.37	0.48
	Hcys	0.37	0.48
	Cys	0.33	0.47
rGO-MnPc-PDA (6')	GSH	0.36	0.48
	Hcys	0.36	0.48

		Cys	Cys		GSH	GSH		Hcys	Hcys	Р-		%
from $\ to$	Cys	100	5	GSH	100	5	Hcys	100	5	1	Total	correct
Cys	6	0	0	1	0	0	0	0	0	0	7	85.71%
Cys 100	0	7	0	0	0	0	0	0	0	0	7	100.00%
Cys 5	0	0	7	0	0	0	0	0	0	0	7	100.00%
GSH	1	0	0	6	0	0	0	0	0	0	7	85.71%
GSH 100	0	0	0	0	7	0	0	0	0	0	7	100.00%
GSH 5	0	0	0	0	0	7	0	0	0	0	7	100.00%
Hcys	1	0	0	0	0	0	6	0	0	0	7	85.71%
Hcys 100	0	0	0	0	0	0	0	7	0	0	7	100.00%
Hcys 5	0	0	0	0	0	0	0	0	7	0	7	100.00%
P-1	0	0	0	0	0	0	0	0	1	5	6	83.33%
Total	8	7	7	7	7	7	6	7	8	5	69	94.20%

Table S5. Results of the fitted regression curves for predicted vs. experimental values and RMSE, for the calibration and validation measurements of the individual samples (Cys, GSH, and Hcys). (Intervals calculated at the 95% confidence level)

Analytes	R ² _{Cal} value	R^2 val value	RMSE _{Cal}	RMSE _{Val}
Cys	0.833	0.966	15.88	7.28
GSH	0.902	0.977	12.18	5.57

Hcys	0.974	0.942	6.29	9.48
------	-------	-------	------	------

	R Square valu	ies - Redox Indicators	
	AA	DA	UA
Electrode	i vs (v) ^{1/2} /(mVs ⁻¹) ^{1/2}	i vs (v) ^{1/2} /(mVs ⁻¹) ^{1/2}	i vs (υ) ^{1/2} /(mVs ⁻¹) ^{1/2}
1' (CuPc)	0.95907	0.96251	0.98701
2' (MnPc)	×	0.96132	0.97094
3' (GO-CuPc-PDA)	0.97512	0.989	0.9903
4' (GO-MnPc-PDA)	×	0.97748	0.98284
5' (rGO-CuPc- PDA)	0.94267	0.98016	0.96895
6' (rGO-MnPc- PDA)	×	0.94961	0.98693

Table S6. Shows the R² value obtained from the plot of current as a function of square root of scan rate.

×- Refers the absence of oxidation current signal.

🗶 i 🔓	17-0	# ~ ↓								Report - M	Aicrosoft Exc	el							_	0	×
File	Ho	ne Inser	Page Li	ayout Fo	ormulas	Data Re	view Vie	ew Add	Ins XLS	TAT									G	ა 🕜 🗆 🗃	ES 6
Paste	🔏 Cut		Calibri	• 11	• A * *	= = [_ &/-	📑 Wrap	Text	General	€ ,0	• .09 Condi	tional For	mat Cell	insert [Delete Forma	Σ Auto	Sum * A	Find &		
	I Forn	hat Painter	B I U		×. •		-=	· · ·	lick VI	STAT	.00	*.º Forma	tting + as Ta	ble - Styles -	*	* *	Clea	Filte	r * Select *		
	Clipboard	Gi		Font	6	i	Align	ment		LSTAT		- Fa	Styles			Cells		Editing			-
-	A24	•	(*	fx																	~
1	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q	R	S	Т	-
1			_																	-	
2				Cu-Pc			Mn-Pc			GO-Cu-PC			rGO-Cu-PC	0		GO-Mn-PC	2		rGO-Mn-PC		- 11
3		D 1	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	Η.
4 K	eplicates	P-1	0.12E-07	0.53E-07	4.01E-07	4.30E-07	8.3/E-0/	9.012-07	0.30E-07	7.5/E-0/	8.73E-07	1.01E-00	1.13E-00	9.01E-07	9.71E-07	1.0/E-06	1.72E-00	1.222-00	1.48193E-06	1.102-00	
5		P1	9.045.07	7.005.07	5.33E-07	4 55 07	9 295 07	1.022-00	1.025.06	1.102-00	1.102-00	1.465.06	1.365.06	1.132-00	1.532-00	1.412-00	2 195 06	1.722-00	2.099225.06	1.546-00	
7		P.1	9.245.07	7.945.07	6 465 07	2 975 07	7 565 07	9.795.07	9.695.07	1.250-00	1 165 06	1.402-00	1.302-00	1.120-00	1.375.06	1.020-00	1.925.06	1.00-00	2.089232-00	1.535-00	
8		P-1	9.415-07	7.45-07	5.02E-07	4.06E-07	7.84F-07	1.02E-06	9.995-07	1.295-06	1.26E-06	1.44E-06	1.43E-06	1.24E-06	1.34E-06	1.55-06	2E-06	1.88F-06	2.21375E-06	1.65E-06	
9		P-1	1.36E-06	1.44E-06	1.74E-06	6.65E-07	1.03E-06	1.29E-06	1.32E-06	1.68E-06	1.74E-06	2.25E-06	2.13E-06	2.06E-06	1.61E-06	1.77E-06	2.25E-06	3.25E-06	3.50739E-06	3.61E-06	
10		P-1	8.57E-07	6.92E-07	5.08E-07	4E-07	7.98E-07	1.02E-06	9.52E-07	1.28E-06	1.22E-06	1.56E-06	1.45E-06	1.29E-06	1.38E-06	1.59E-06	2.16E-06	1.8E-06	1.79108E-06	1.3E-06	
11		Cvs-50	3.91E-07	3.02E-07	2.61E-07	9.64E-08	1.9E-07	1.99E-07	4.86E-07	3.96E-07	-1.5E-08	2.04E-07	-6.4E-08	-3.6E-08	3.1E-07	1E-07	-1.8E-07	1.56E-07	-5.2186E-08	-4.9E-07	
12		Cys-50	3.78E-07	2.87E-07	1.99E-07	2.31E-07	3.26E-07	2.96E-07	8.25E-07	6.8E-07	3.01E-07	2.67E-07	3.06E-10	3.39E-08	2.93E-07	1.69E-07	9.09E-08	2.24E-07	1.5869E-08	-5.8E-07	
13		Cys-50	3.73E-07	3.16E-07	3.01E-07	1.08E-07	1.91E-07	1.79E-07	4.86E-07	3.96E-07	-1.5E-08	2.17E-07	-4.9E-08	-1.1E-08	2.15E-07	1.33E-07	1.02E-07	3.08E-07	1.10778E-07	-5.8E-07	
14		Cys-50	3.66E-07	2.98E-07	2.74E-07	8.76E-08	1.83E-07	1.65E-07	4.76E-07	4.17E-07	-4.5E-08	3.4E-07	-1E-08	2.93E-08	2.35E-07	1.34E-07	3.42E-08	3.28E-07	1.2146E-07	-6E-07	
15		Cys-50	3.29E-07	2.89E-07	2.41E-07	5.43E-08	1.14E-07	8.54E-08	4.54E-07	4.19E-07	-3E-08	1.15E-07	-1.3E-07	-7.1E-08	2.84E-07	1.39E-07	-4.8E-08	3.23E-07	7.08E-08	-6.9E-07	
16		Cys-50	1.64E-06	1.75E-06	2.04E-06	5.17E-07	8.25E-07	9.95E-07	1.53E-06	1.79E-06	1.99E-06	3.17E-06	2.71E-06	2.56E-06	1.72E-06	1.66E-06	2.19E-06	2.23E-06	2.49359E-06	2.63E-06	
17		Cys-50	2.73E-07	2.87E-07	3.25E-07	5.25E-08	1.43E-07	1.68E-07	5.26E-07	5.35E-07	1.08E-07	1.97E-07	-6.2E-08	-6.1E-10	3.03E-07	1.79E-07	3.2E-08	3.13E-07	3.31115E-07	-5E-07	
18		GSH-50	3.57E-07	3.34E-07	3.4E-07	4.91E-08	1.19E-07	2.56E-07	5.84E-07	7.06E-07	5.15E-07	1.25E-06	6.35E-07	5.15E-07	7.88E-07	6.21E-07	3.58E-07	8.38E-07	3.81165E-07	2.21E-07	
19	_	GSH-50	4.39E-07	4.48E-07	4.48E-07	7.6E-08	1.66E-07	3.12E-07	4.52E-07	6.57E-07	4.24E-07	7.41E-07	1.94E-07	1.73E-07	7.44E-07	6.56E-07	3.77E-07	8.02E-07	2.89307E-07	9.64E-08	
20		GSH-50	3.75E-07	4.04E-07	4.27E-07	5.34E-08	1.21E-07	2.55E-07	3.2E-07	5.96E-07	2.89E-07	6.56E-07	9.22E-08	8.48E-08	6.86E-07	6.45E-07	3.29E-07	8.53E-07	4.40369E-07	1.96E-07	
21		GSH-50	3.01E-07	3.5E-07	4.09E-07	5E-08	1.15E-07	2.63E-07	2.3E-07	6E-07	2.94E-07	6.45E-07	1.52E-09	-9.5E-09	7.13E-07	7.03E-07	2.86E-07	7.94E-07	4.55017E-07	1.83E-07	
22	_	GSH-50	3.88E-07	4.01E-07	4.29E-07	5.71E-08	1.41E-07	3.11E-07	3.35E-07	7.11E-07	4.14E-07	5.77E-07	-9.1E-08	-7.4E-08	6.65E-07	7.06E-07	4.97E-07	8.15E-07	4.62341E-07	1.71E-07	
23	_	GSH-50	1.74E-06	1.79E-06	2.06E-06	4.7E-07	8.15E-07	1.22E-06	1.48E-06	1.97E-06	1.97E-06	3.54E-06	3.11E-06	2.87E-06	2.04E-06	2.19E-06	2.67E-06	2.74E-06	2.87232E-06	2.97E-06	
24		GSH-50	3.23E-07	3.32E-07	3.36E-07	4.64E-08	9.4E-08	2.13E-07	3.32E-07	8.53E-07	4.95E-07	9.35E-07	1.48E-07	1.21E-07	6.35E-07	7.33E-07	3.88E-07	7.18E-07	3.36914E-07	5.68E-08	-
14 4 1	H A	A Sheet2	DA1	Sheet3	A2 Sheet	10 DA3	Sheet11	DA4	Sheet16	DA5 She	et19 DAG	20/					111			· ·	
Ready							-	_		_		_		_	_	_			100% -	00.014	-+
	0	Type here	to search			₽ (נ ₩	🧿 hov	v to take a s	c 🔽	K Micr	osoft Excel	🥂 🥂 Pr	esentation1	· 📙	Unknown-p	aper	x ^e ^ '	\$) (?. 🖿 6:	24/2018	ב
-	. .														-		4.0				

5. Step wise procedure for generating LDA score plot shown in Figure 10

Red Box: Contains difference in current value at particular potential (380 mV, 480mV and 580 mV) obtained from the LSV. **Green Box**: Shows the label of the replicates. **Black Box**: Shows the name the electrodes used as working electrode.

X	Image: Section 1 Image: Report - Microsoft Excel − 0																				
File	Home	e Inser	Page I	ayout F	ormulas	Dat	ta Rev	riew Vie	w Add-	Ins XLS	TAT									6	১ 🕜 🗆 🗟
>	۲	۲	No.	th -	•	X	\$ /	680	2	?		?	. (> ا	R +	3	DI	LG	X		
٠	*	Order	Preparing D data *	data *	data *	data	ing Model data	ling Machir	correla	tion/Associa tests *	tion Parame tests	tric Nonpara	ametric Test	ing for	feature	ted XLSTAT	3DPlot XLS	TAT-LG TO	ools		
LSTAT	Recent			Discov	er, explai	fa	Factor ana	lysis	9		Test a hy	pothesis		XLST	AT-R						
	A24	-	(=	fx			Principal C	omponent A	Analysis (PCA)	1											
1	A	В	C	D	>		Discrimina	nt Analysis (DA)	,	1	К	L	м	N	0	р	0	R	S	Т
1		-		-	-		Correction	dence Anab					_					_			
2	Choos	se DA		Cu-Pc			Multiple C	orrecoonder	nce Analysis	(MACA)	SO-Cu-PC			rGO-Cu-P	с		GO-Mn-P	с		rGO-Mn-PC	
3			380 mV	480 mV	580 m\		Multiple C	onesponde	ice Analysis	(MICA)	180 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV
4 Re	plicates	P-1	6.12E-07	6.53E-07	4.61E	NDS 1	Multidime	nsional Scal	ing (MDS)		7.57E-07	8.73E-07	1.01E-06	1.13E-06	9.01E-07	9.71E-07	1.07E-06	1.72E-06	1.22E-06	1.48193E-06	1.16E-06
5	1	P-1	8.12E-07	7.85E-07	5.95E	Co F	Principal C	oordinate A	nalysis		1.18E-06	1.18E-06	1.4E-06	1.38E-06	1.13E-06	1.35E-06	1.41E-06	1.91E-06	1.72E-06	1.99249E-06	1.54E-06
5		P-1	9.04E-07	7.99E-07	6.34E-	ا 💕	k-means cl	ustering			1.25E-06	1.2E-06	1.46E-06	1.36E-06	1.12E-06	1.51E-06	1.62E-06	2.19E-06	1.8E-06	2.08923E-06	1.58E-06
7		P-1	9.24E-07	7.94E-07	6.46E	罚 /	Agglomera	tive hierarcl	hical clusterin	ng (AHC)	1.2E-06	1.16E-06	1.45E-06	1.38E-06	1.15E-06	1.37E-06	1.48E-06	1.93E-06	1.88E-06	2.17346E-06	1.63E-06
В		P-1	9.41E-07	7 7.4E-07	5.02E	•	Gaussian M	Mixture Mod	lels		1.29E-06	1.26E-06	1.44E-06	1.43E-06	1.24E-06	1.34E-06	1.5E-06	2E-06	1.88E-06	2.21375E-06	1.65E-06
9		P-1	1.36E-06	5 1.44E-06	1.74E-	ŧ (Univariate	clustering			1.68E-06	1.74E-06	2.25E-06	2.13E-06	2.06E-06	1.61E-06	1.77E-06	2.25E-06	3.25E-06	3.50739E-06	3.61E-06
0		P-1	8.57E-07	6.92E-07	5.08E-0)7	4E-07	7.98E-07	1.02E-06	9.52E-07	1.28E-06	1.22E-06	1.56E-06	1.45E-06	1.29E-06	1.38E-06	1.59E-06	2.16E-06	1.8E-06	1.79108E-06	1.3E-06
1		Cys-50	3.91E-07	7 3.02E-07	2.61E-0	07 9	.64E-08	1.9E-07	1.99E-07	4.86E-07	3.96E-07	-1.5E-08	2.04E-07	-6.4E-08	-3.6E-08	3.1E-07	1E-07	-1.8E-07	1.56E-07	-5.2186E-08	-4.9E-07
2		Cys-50	3.78E-07	2.87E-07	1.99E-0	07 2	2.31E-07	3.26E-07	2.96E-07	8.25E-07	6.8E-07	3.01E-07	2.67E-07	3.06E-10	3.39E-08	2.93E-07	1.69E-07	9.09E-08	2.24E-07	1.5869E-08	-5.8E-07
3		Cys-50	3.73E-07	7 3.16E-07	3.01E-0	07 1	.08E-07	1.91E-07	1.79E-07	4.86E-07	3.96E-07	-1.5E-08	2.17E-07	-4.9E-08	-1.1E-08	2.15E-07	1.33E-07	1.02E-07	3.08E-07	1.10778E-07	-5.8E-07
4		Cys-50	3.66E-07	2.98E-07	2.74E-0	07 8	.76E-08	1.83E-07	1.65E-07	4.76E-07	4.17E-07	-4.5E-08	3.4E-07	-1E-08	2.93E-08	2.35E-07	1.34E-07	3.42E-08	3.28E-07	1.2146E-07	-6E-07
5		Cys-50	3.29E-07	7 2.89E-07	2.41E-0	07 5	.43E-08	1.14E-07	8.54E-08	4.54E-07	4.19E-07	-3E-08	1.15E-07	-1.3E-07	-7.1E-08	2.84E-07	1.39E-07	-4.8E-08	3.23E-07	7.08E-08	-6.9E-07
6		Cys-50	1.64E-06	5 1.75E-06	2.04E-0	6 5	.17E-07	8.25E-07	9.95E-07	1.53E-06	1.79E-06	1.99E-06	3.17E-06	2.71E-06	2.56E-06	1.72E-06	1.66E-06	2.19E-06	2.23E-06	2.49359E-06	2.63E-06
7		Cys-50	2.73E-07	7 2.87E-07	3.25E-0)7 5	.25E-08	1.43E-07	1.68E-07	5.26E-07	5.35E-07	1.08E-07	1.97E-07	-6.2E-08	-6.1E-10	3.03E-07	1.79E-07	3.2E-08	3.13E-07	3.31115E-07	-5E-07
8		GSH-50	3.57E-07	7 3.34E-07	3.4E-0	07 4	.91E-08	1.19E-07	2.56E-07	5.84E-07	7.06E-07	5.15E-07	1.25E-06	6.35E-07	5.15E-07	7.88E-07	6.21E-07	3.58E-07	8.38E-07	3.81165E-07	2.21E-07
9		GSH-50	4.39E-07	4.48E-07	4.48E-0)7	7.6E-08	1.66E-07	3.12E-07	4.52E-07	6.57E-07	4.24E-07	7.41E-07	1.94E-07	1.73E-07	7.44E-07	6.56E-07	3.77E-07	8.02E-07	2.89307E-07	9.64E-08
0		GSH-50	3.75E-07	4.04E-07	4.27E-0)7 5	.34E-08	1.21E-07	2.55E-07	3.2E-07	5.96E-07	2.89E-07	6.56E-07	9.22E-08	8.48E-08	6.86E-07	6.45E-07	3.29E-07	8.53E-07	4.40369E-07	1.96E-07
1		GSH-50	3.01E-07	7 3.5E-07	4.09E-0)7	5E-08	1.15E-07	2.63E-07	2.3E-07	6E-07	2.94E-07	6.45E-07	1.52E-09	-9.5E-09	7.13E-07	7.03E-07	2.86E-07	7.94E-07	4.55017E-07	1.83E-07
2		GSH-50	3.88E-07	4.01E-07	4.29E-0	07 5	.71E-08	1.41E-07	3.11E-07	3.35E-07	7.11E-07	4.14E-07	5.77E-07	-9.1E-08	-7.4E-08	6.65E-07	7.06E-07	4.97E-07	8.15E-07	4.62341E-07	1.71E-07
3		GSH-50	1.74E-06	5 1.79E-06	2.06E-0	6	4.7E-07	8.15E-07	1.22E-06	1.48E-06	1.97E-06	1.97E-06	3.54E-06	3.11E-06	2.87E-06	2.04E-06	2.19E-06	2.67E-06	2.74E-06	2.87232E-06	2.97E-06
4		GSH-50	3.23E-07	7 3.32E-07	3.36E-0	07 4	.64E-08	9.4E-08	2.13E-07	3.32E-07	8.53E-07	4.95E-07	9.35E-07	1.48E-07	1.21E-07	6.35E-07	7.33E-07	3.88E-07	7.18E-07	3.36914E-07	5.68E-08
• •	DA DA	Sheet2	DA1	Sheet3	A2 She	et10	DA3	Sheet11	DA4 S	Sheet16	DA5 She	et19 DA	6/91/					111	-		
Ready							-	_		_		-	_	-	_	_	_	_		100%	
Ŧ	Оту	pe here	to search			Ę	Q (II	1	🧿 how	v to take a s	c	K Mici	rosoft Excel	🥂 🥂 P	resentation1		Unknown-p	oaper	к ^q ^ 1	\$) (?. 🖬 6 4/	09 PM 24/2018

Step	2
------	---

Step 2

Fil	le Hon	i~∣ ↓ ne Inseri	t Page L	ayout Fe	ormulas	Data R	eview Vi	ew Add	-Ins XLS	Report -	Microsoft Ex	cel							-	0 X
XLST	FAT Recent) Order	Preparing D data ~	data - Discov	cualizing Ani data - d er, explain a	alyzing Mod ata + dat	eling Machi ta * learnin	ne Correla	2 ation/Associa tests -	ation Parame tests Test a hy	etric Nonpar test	ametric Testi s ≠ out	ng for liers *	Advan feature	xLSTAT	D. I 3DPlot XLS	LG TAT-LG TO	Vols		
	A24	-	(*	f _x																
1	А	В	С	C		alvzi	na dat	a H	1	J	K	L	М	N	0	р	Q	R	S	Т
1				U		ιαιγΖι	ig uat	a												
2				Cu-Pc			Mn-Pc			GO-Cu-PC	2		rGO-Cu-P	С		GO-Mn-P	C		rGO-Mn-PC	
3		D 1	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV
4	Replicates	P-I	6.12E-07	6.53E-07	4.61E-07	4.36E-07	8.37E-07	9.61E-07	6.36E-07	7.57E-07	8.73E-07	1.01E-06	1.13E-06	9.01E-07	9.71E-07	1.07E-06	1.72E-06	1.22E-06	1.48193E-06	1.165-06
0		P-I D 1	8.12E-07	7.85E-07	5.95E-07	3.9E-07	7.52E-07	1.02E-06	9.83E-07	1.18E-00	1.18E-00	1.4E-00	1.38E-00	1.13E-06	1.35E-00	1.41E-00	1.91E-06	1.72E-00	1.99249E-06	1.54E-00
7		P.1	9.04E-07	7.992-07	6.46E-07	4.5E-07	0.30E-07	9.795-07	9.695-07	1.252-00	1 165.05	1.402-00	1.302-00	1.122-00	1.312-00	1.022-00	1.925.06	1.00-00	2.00323E-00	1.585-00
2		P-1	9.415-07	7.45-07	5.025-07	4.065-07	7.945-07	1.025-06	9.995-07	1.205-06	1.102-00	1.452-00	1.382-00	1.132-00	1.375-00	1.462-00	25-06	1.000-00	2.1/3402-00	1.655-06
2		P-1	1.365-06	1.44E-06	1 745-06	6.65E-07	1.03E-06	1.022-00	1.325-06	1.685-06	1.202-00	2 255-06	2 135-06	2.065-06	1.61E-06	1.775-06	2 255-06	3 255-06	3 507395-06	3.61E-06
0		P-1	8 57E-07	6 92E-07	5.08E-07	4E-07	7 985-07	1.025-06	9.525-07	1.000-00	1.742-00	1 565-06	1.455-06	1 295-06	1 385-06	1.595-06	2 165-06	1.8E-06	1 791085-06	1 35-06
1		Cvs-50	3.91E-07	3.02E-07	2.61E-07	9.64E-08	1.9E-07	1.99E-07	4.86E-07	3.96E-07	-1.5E-08	2.04E-07	-6.4E-08	-3.6E-08	3.1E-07	1E-07	-1.8E-07	1.56E-07	-5.2186E-08	-4.9E-07
2		Cvs-50	3.78E-07	2.87E-07	1.99E-07	2.31E-07	3.26E-07	2.96E-07	8.25E-07	6.8E-07	3.01E-07	2.67E-07	3.06E-10	3.39E-08	2.93E-07	1.69E-07	9.09E-08	2.24E-07	1.5869E-08	-5.8E-07
3		Cvs-50	3.73E-07	3.16E-07	3.01E-07	1.08E-07	1.91E-07	1.79E-07	4.86E-07	3.96E-07	-1.5E-08	2.17E-07	-4.9E-08	-1.1E-08	2.15E-07	1.33E-07	1.02E-07	3.08E-07	1.10778E-07	-5.8E-07
4		Cvs-50	3.66E-07	2.98E-07	2.74E-07	8.76E-08	1.83E-07	1.65E-07	4.76E-07	4.17E-07	-4.5E-08	3.4E-07	-1E-08	2.93E-08	2.35E-07	1.34E-07	3.42E-08	3.28E-07	1.2146E-07	-6E-07
5		Cys-50	3.29E-07	2.89E-07	2.41E-07	5.43E-08	1.14E-07	8.54E-08	4.54E-07	4.19E-07	-3E-08	1.15E-07	-1.3E-07	-7.1E-08	2.84E-07	1.39E-07	-4.8E-08	3.23E-07	7.08E-08	-6.9E-07
6		Cys-50	1.64E-06	1.75E-06	2.04E-06	5.17E-07	8.25E-07	9.95E-07	1.53E-06	1.79E-06	1.99E-06	3.17E-06	2.71E-06	2.56E-06	1.72E-06	1.66E-06	2.19E-06	2.23E-06	2.49359E-06	2.63E-06
7		Cys-50	2.73E-07	2.87E-07	3.25E-07	5.25E-08	1.43E-07	1.68E-07	5.26E-07	5.35E-07	1.08E-07	1.97E-07	-6.2E-08	-6.1E-10	3.03E-07	1.79E-07	3.2E-08	3.13E-07	3.31115E-07	-5E-07
8		GSH-50	3.57E-07	3.34E-07	3.4E-07	4.91E-08	1.19E-07	2.56E-07	5.84E-07	7.06E-07	5.15E-07	1.25E-06	6.35E-07	5.15E-07	7.88E-07	6.21E-07	3.58E-07	8.38E-07	3.81165E-07	2.21E-07
9		GSH-50	4.39E-07	4.48E-07	4.48E-07	7.6E-08	1.66E-07	3.12E-07	4.52E-07	6.57E-07	4.24E-07	7.41E-07	1.94E-07	1.73E-07	7.44E-07	6.56E-07	3.77E-07	8.02E-07	2.89307E-07	9.64E-08
0		GSH-50	3.75E-07	4.04E-07	4.27E-07	5.34E-08	1.21E-07	2.55E-07	3.2E-07	5.96E-07	2.89E-07	6.56E-07	9.22E-08	8.48E-08	6.86E-07	6.45E-07	3.29E-07	8.53E-07	4.40369E-07	1.96E-07
1		GSH-50	3.01E-07	3.5E-07	4.09E-07	5E-08	1.15E-07	2.63E-07	2.3E-07	6E-07	2.94E-07	6.45E-07	1.52E-09	-9.5E-09	7.13E-07	7.03E-07	2.86E-07	7.94E-07	4.55017E-07	1.83E-07
2		GSH-50	3.88E-07	4.01E-07	4.29E-07	5.71E-08	1.41E-07	3.11E-07	3.35E-07	7.11E-07	4.14E-07	5.77E-07	-9.1E-08	-7.4E-08	6.65E-07	7.06E-07	4.97E-07	8.15E-07	4.62341E-07	1.71E-07
3		GSH-50	1.74E-06	1.79E-06	2.06E-06	4.7E-07	8.15E-07	1.22E-06	1.48E-06	1.97E-06	1.97E-06	3.54E-06	3.11E-06	2.87E-06	2.04E-06	2.19E-06	2.67E-06	2.74E-06	2.87232E-06	2.97E-06
4		GSH-50	3.23E-07	3.32E-07	3.36E-07	4.64E-08	9.4E-08	2.13E-07	3.32E-07	8.53E-07	4.95E-07	9.35E-07	1.48E-07	1.21E-07	6.35E-07	7.33E-07	3.88E-07	7.18E-07	3.36914E-07	5.68E-08
4	• H 🚺	Sheet2	DAL	Sheet3 📣	A2 Shee	t10 DA3	Sheet11	DA4	Sheet16	DA5 She	eet19 DA	6 🖉	•				111	-		
Read	dy												-		_		_		100% 😑 —	
	0	ype here	to search			Q () W	🌀 hov	w to take a s	c 🚩	📉 Mic	rosoft Excel	🥂 隆 Pi	resentation1		Unknown-p	aper	x ^e ^	\$) (? • • 6	09 PM 24/2018 💭

S39

K	Report	- Microsoft Excel		× 10 – XX 16 – (0 4
Image: State of the s	sycing Modeling Machine at at at at at a learning - nd predict	netric Nonparametric Testing for ts * tests * outliers * hypothesis	the start and th	i Kana Kana Kana Kana Kana Kana Kana Kan
A B C D E	F G H I J	K L M N	N O P	Q R S T
2 Cu-Pc	Mn-Pc GO-Cu-f	PC rGO-Cu-PC	GO-Mn-PC	rGO-Mn-PC
3 380 mV 480 mV 580 mV 4 F P-1 6.12E-07 6.53E-07 4.61E-07	380 mV 480 mV 580 mV 380 mV 480 mV 4.36E-07 8.37E Discriminant Analysis (DA)	580 mV 380 mV 480 mV 580 m	-07 9.71E-07 1.07E-06 1	0 mV 380 mV 480 mV 580 mV 1.72E-06 1.22E-06 1.48193E-06 1.16E-06
5 🙃 P-1 8.12E-07 7.85E-07 5.95E-07	3.9E-07 7.52E General Options Validation Predict	ion Missing data Outputs Charts	-06 1.35E-06 1.41E-06 1	1.91E-06 1.72E-06 1.99249E-06 1.54E-06
6 0 P-1 9.04E-07 7.99E-07 6.34E-07	4.5E-07 8.38E Y / Dependent variables:	C Range:	-06 1.51E-06 1.62E-06 2	2.19E-06 1.8E-06 2.08923E-06 1.58E-06
7 7 9.24E-07 7.94E-07 6.46E-07	3.97E-07 7.56E Qualitative:	(Sheet	-06 1.37E-06 1.48E-06 1	1.93E-06 1.88E-06 2.17346E-06 1.63E-06
8 0 9.41E-07 7.4E-07 5.02E-07	4.06E-07 7.84E Sheet19!\$8\$4:\$8\$73	- Workbook	-06 1.34E-06 1.5E-06	2E-06 1.88E-06 2.21375E-06 1.65E-06
9 7 P-1 1.36E-06 1.44E-06 1.74E-06	6.65E-07 1.03E X / Explanatory variables:	Variable labels	-06 1.61E-06 1.77E-06 2	2.25E-06 3.25E-06 3.50739E-06 3.61E-06
10 P-1 8.57E-07 6.92E-07 5.08E-07	4E-07 7.98E V Quantitative:	Coservation labels:	-06 1.38E-06 1.59E-06 2	2.16E-06 1.8E-06 1.79108E-06 1.3E-06
11 Cys-50 3.91E-07 3.02E-07 2.61E-07	9.64E-08 1.9E Sheet19!\$C\$4:\$T\$73	-	-08 3.1E-07 1E-07 -	-1.8E-07 1.56E-07 -5.2186E-08 -4.9E-07
12 S Cys-50 3.78E-07 2.87E-07 1.99E-07	2.31E-07 3.26E	Observation weights:	-08 2.93E-07 1.69E-07 9	1.09E-08 2.24E-07 1.5869E-08 -5.8E-07
13 Cys-50 3.73E-07 3.16E-07 3.01E-07	1.08E-07 1.91E		-08 2.15E-07 1.33E-07 1	02E-07 3.08E-07 1.10778E-07 -5.8E-07
14 Cys-50 3.66E-07 2.98E-07 2.74E-07	8.76E-08 1.83E		-08 2.35E-07 1.34E-07 3	.42E-08 3.28E-07 1.2146E-07 -6E-07
15 0 Cys-50 3.29E-07 2.89E-07 2.41E-07	5.43E-08 1.14E		-08 2.84E-07 1.39E-07 ·	4.8E-08 3.23E-07 7.08E-08 -6.9E-07
16 Cys-50 1.64E-06 1.75E-06 2.04E-06	5.17E-07 8.25E 🕐 🥒 🕈	OK Cancel Help	-06 1.72E-06 1.66E-06 2	.19E-06 2.23E-06 2.49359E-06 2.63E-06
17 CVS-50 2.73E-07 2.87E-07 3.25E-07	5.25E-08 1.43E-U/ 1.08E-U/ 5.20E-U/ 5.35E-U	J/ 1.08E-0/ 1.9/E-0/ -0.2E-08 -0.1	te-10 3.03E-07 1.79E-07	3.2E-08 3.13E-07 3.31115E-07 -5E-07
18 0 GSH-501 3.57E-07 3.34E-07 3.4E-07	4.91E-08 1.19E-07 2.56E-07 5.84E-07 7.06E-0	07 5.15E-07 1.25E-06 6.35E-07 5.15	5E-07 7.88E-07 6.21E-07 3	.58E-07 8.38E-07 3.81165E-07 2.21E-07
19 = GSH-50; 4.39E-07 4.48E-07 4.48E-07	7.6E-08 1.66E-07 3.12E-07 4.52E-07 6.57E-0	07 4.24E-07 7.41E-07 1.94E-07 1.73	3E-07 7.44E-07 6.56E-07 3	3.77E-07 8.02E-07 2.89307E-07 9.64E-08
20 GSH-50 3.75E-07 4.04E-07 4.27E-07	5.34E-08 1.21E-07 2.55E-07 3.2E-07 5.96E-0	07 2.89E-07 6.56E-07 9.22E-08 8.48	3E-08 6.86E-07 6.45E-07 3	1.29E-07 8.53E-07 4.40369E-07 1.96E-07
21 0 × GSH-50; 3.01E-07 3.5E-07 4.09E-07	5E-08 1.15E-07 2.63E-07 2.3E-07 6E-0	07 2.94E-07 6.45E-07 1.52E-09 -9.5	E-09 7.13E-07 7.03E-07 2	2.86E-07 7.94E-07 4.5501/E-07 1.83E-07
22 GSH-50 3.88E-07 4.01E-07 4.29E-07	S./IE-08 1.4IE-07 3.IIE After selec	ting the data	1E-08 6.65E-07 7.06E-07 4	1.9/E-0/ 8.15E-0/ 4.62341E-0/ 1./1E-0/
23 GSH-50 1.74E-06 1.79E-06 2.06E-06	4./E-07 8.15E-07 1.22E	6 2.87	/E-06 2.04E-06 2.19E-06 2	2.67E-06 2.74E-06 2.87232E-06 2.97E-06
24 GST-50; 3.23E-07 3.32E-07 3.36E-07	4.64E-08 9.4E-08 2.13E CIICK OK	7 1.21	LE-U/ 6.35E-U/ 7.33E-07 3	3.88E-07 7.18E-07 3.36914E-07 5.68E-08
25 HCyS-30 7.5E-07 5.29E-07 5.57E-07	3.31E-07 3.16E-07 2.61E-07 4.93E-07 3.16E-0	07 1.94E-07 8.27E-07 4.86E-07 4.63	3E-07 3.38E-07 2.4E-07 1	
Discriminant Analysis (DA)	10 DAS Sneet11 DAY Sneet16 DAS S	neeriy DAG	81	
				611 PM
U Type here to search	U [] W O how to take a sc	Microsoft Excel Presenta	ition1 📙 Unknown-pap	er g ^R ∧ Φ)) <i>(ii</i> , ⊡ 4/24/2018 🖓

ile	7 - (≌ Hom	×∣ ↓ e Insert	Page La	ayout Fe	ormulas	Data R	eview V	iew Add	-Ins XLS	Report - N	Microsoft Exe	el							_	 ≥ (2) ⊂ ∉
> TAT	Recent) Order	Preparing De data +	escribing Vis data * Discov	sualizing Ani data - d er, explain an	alyzing Mod ata - dai nd predict	eling Mach ta * learnin	ine Correla	2 ation/Associa tests *	ation Parame tests Test a hyp	tric Nonpara test pothesis	ametric Testi s * outl	ng for iers * XLST.	Advar featu	nced XLSTAT	D. 3DPlot XLS	LG	X pols		
_	B4	-	(*	fx				1		1										
	A	В	C	D	E	F	G	Н	1	J	K	L	M	N	0	P	Q	R	S	T
0		D 1	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV
кері	icates	P-1	0.12E-07	0.53E-07	4.01E-07	4.36E-07	8.3/E-0/	criminant Ar	alvsis (DA)	1.5/E-0/	8.73E-07	1.01F-06	1.13E-06	ATTE-0	/ 9./1E-0/	1.0/E-06	1.72E-06	1.22E-06	1.48193E-06	1.102-06
	1	D 1	0.12E-07	7.005.07	5.93E-07	3.9E-07	7.52E	neral Octo	ne Validatio	Prediction	Miceing da		Charte	-0	1.35E-00	1.412-00	2.105.00	1.72E-00	1.99249E-06	1.542-00
1		D 1	9.04E-07	7.992-07	0.34E-07	4.5E-07	0.38E 0	Dependent vi	ariables:	reaction	C D D D D D D D D D D D D D D D D D D D				1.31E-00	1.022-00	2.192-00	1.85-00	2.089232-00	1.582-06
-		D 1	9.24E-07	7.54E-07	0.40E-07	3.3/E-0/	7.505 17	alitative:	a iduică:		Range				1.3/E-00	1.482-00	1.93E-00	1.08E-00	2.1/340E-00	1.03E-00
	6	P.1	3.41E-07	1.4E-07	1.74E.06	4.00E-07	1.025	Sheet 19! \$8\$4	:\$8\$73	-	C Workh	ook		-0	6 1.615.06	1.32-00	225-00	1.08E-00	2.213/3E-00	2.615.06
	ĕ	D 1	2.502-00	1.442-00	5.095.07	0.03E-07	7.000			_	- WORKD	000		-0	6 1 29E 06	1.7/2-00	2.25E-00	1.95.06	1 701095 06	1 25 06
	9	Cvc 50	0.5/E-0/	2.025.07	3.08E-07	46-07	1.58E X/	Explanatory	ariables:		Variab	le labels		-0	2 1.382-00	1.592-00	1.95.07	1.85-00	E 21965 09	1.32-00
	Lie	Cvs-50	3.712-07	3.020-07	1.995-07	2 215-07	2 265	Quantitative	:		Obser	vation labels:			2 925-07	1 695-07	9.095.09	2.245-07	1 59695-09	-4.50-07
	/a	Cvs. 50	2 725 07	2.0/2-07	2.015.07	1.095.07	1 915			-					2.355-07	1.092-07	1.025.07	2.24E-07	1 107795-07	-5.0E-07
E	÷	Cvs-50	3.665-07	2 985-07	2 745-07	8 765-08	1 926	Qualitative:			Cobser	vation weight	s:		8 2 255-07	1 345-07	3.425-08	3 285-07	1 21/65-07	-5.65-07
E	e	Cvs-50	3 29E-07	2.53E-07	2.14E-07	5.43E-08	1 145			_					8 2 84F-07	1 395.07	-4 8F-09	3 235,07	7 085-09	-6 9E-0
5	Ð	Cvs-50	1.64E-06	1.75E-06	2.04E-06	5.17E-07	8.25F								6 1.72E-06	1.66E-06	2.19F-06	2.23E-06	2.49359E-06	2.63E-0
Ü	e	Cvs-50	2.73E-07	2.87E-07	3.25E-07	5.25E-08	1.43F (*	s 🥒 🗸		٦	OK	Cancel	Н	ala -1	0 3.03E-07	1.79E-07	3.2E-08	3.13E-07	3.31115E-07	-5E-07
s	0	GSH-50	3.57E-07	3.34E-07	3.4E-07	4.91E-08	1.195-117	2.5bE-07	5.84E-07	1 / 06E-07	5.15E-07	1.72E-00	D 35E-07	5.155-0	7 7.88E-07	6.21E-07	3.58E-07	8.38F-07	3.81165E-07	2.21E-07
E	ő	GSH-50	4 39E-07	4 48E-07	4 48E-07	7 6E-08	1.66E-07	3 12E-07	4 52E-07	6 57E-07	4 24E-07	7.41E-07	1 94E-07	1 73E-0	7 7 44E-07	6 56E-07	3 77E-07	8 02E-07	2 89307E-07	9 64E-0
Ð	10	GSH-50	3.75E-07	4.04E-07	4.27E-07	5.34E-08	1.21E-07	2.55E-07	3.2E-07	5.96E-07	2.89E-07	6.56E-07	9.22E-08	8.48E-0	8 6.86E-07	6.45E-07	3.29E-07	8.53E-07	4.40369E-07	1.96E-07
£	т¥.	GSH-50	3.01E-07	3.5E-07	4.09E-07	5E-08	1.15E-07	2.63E-07	2.3E-07	6E-07	2.94E-07	6.45E-07	1.52E-09	-9.5E-0	9 7.13E-07	7.03E-07	2.86E-07	7.94E-07	4.55017E-07	1.83E-07
t	9)	GSH-50	3.88E-07	4.01E-07	4.29E-07	5.71E-08	1.41E-07	3.11E-07	3.35E-07	7.11E-07	4.14E-07	5.77E-07	-9.1E-08	-7.4E-0	8 6.65E-07	7.06E-07	4.97E-07	8.15E-07	4.62341E-07	1.71E-07
ð	\succ	GSH-50	1.74E-06	1.79E-06	2.06E-06	4.7E-07	8.15E-07	1.22E-06	1.48E-06	1.97E-06	1.97E-06	3.54E-06	3.11E-06	2.87E-0	6 2.04E-06	2.19E-06	2.67E-06	2.74E-06	2.87232E-06	2.97E-06
B	5	GSH-50	3.23E-07	3.32E-07	3.36E-07	4.64E-08	9.4E-08	2.13E-07	3.32E-07	8.53E-07	4.95E-07	9.35E-07	1.48E-07	1.21E-0	7 6.35E-07	7.33E-07	3.88E-07	7.18E-07	3.36914E-07	5.68E-08
0)	÷	Hcys-50	7.5E-07	5.29E-07	5.57E-07	3.31E-07	3.16E-07	2.61E-07	4.93E-07	3.16E-07	1.94E-07	8.27E-07	4.86E-07	4.63E-0	7 3.38E-07	2.4E-07	1.26E-07	2.84E-07	5.8899E-08	-1.4E-07
		Hcvs-50	9.31E-07	6.7E-07	7.54E-07	4.01E-07	3.73E-07	2.33E-07	4.83E-07	3.23E-07	1.84E-07	1E-06	6.29E-07	6.56E-0	7 3.02E-07	2.97E-07	1.6E-07	4.28E-07	1.61438E-07	-9.6E-08
• •	DA	Sheet2	DAL	sheet3	A2 Shee	t10 DA3	Sheet11	DA4	Sheet16	DA5 She	et19 DA	5/92/								
min	ant Anal	ysis (DA)																	100% 🕞 —	1
	-			_															6	10 PM

Step 5

S40

	17 - C1		Dentel	august E.		Data D	Nieuro Mi			Report -	Microsoft Ex	el							-		× A M
000	nom		Pagel						> XLS		?	6			2			/	0	, 🕛 🗆 🖁	p ~~
-	9	6	Y			A 1		-	2	_	뒥				<u> </u>		LG	X			
*	*	Order	Preparing D data •	escribing Vis data *	data * d	alyzing Mod lata • dat	eling Machi a • learnin	g *	ation/Associa tests *	ation Param test	etric Nonpara s • test	ametric Testi s 👻 outl	ng for iers •	feature	s * XLSTAT-	3DPlot XLS	TAT-LG To	vols			
KLSTAT	Recent			Discov	er, explain a	nd predict		-		Test a h	pothesis		XLSTA	T-R							
		•	(*	f _x																	~
4	А	В	С	D	E	F	G	н	1	J	K	L	М	N	0	Р	Q	R	S	т	
2				Cu-Pc			Mn-Pc			GO-Cu-P	C		rGO-Cu-PC			GO-Mn-P	с		rGO-Mn-PC		
3			380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV 5	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	
4 Rep	licates	P-1	6.12E-07	6.53E-07	4.61E-07	4.36E-07	8.37E-07	XLSTAT -	Message				×	0.01E-07	9.71E-07	1.07E-06	1.72E-06	1.22E-06	1.48193E-06	1.16E-06	
5		P-1	8.12E-07	7.85E-07	5.95E-07	3.9E-07	7.52E-07						DSCIRG01	.13E-06	1.35E-06	1.41E-06	1.91E-06	1.72E-06	1.99249E-06	1.54E-06	
6		P-1	9.04E-07	7.99E-07	6.34E-07	4.5E-07	8.38E-07		X / Quanti	tative				12E-06	1.51E-06	1.62E-06	2.19E-06	1.8E-06	2.08923E-06	1.58E-06	1
7		P-1	9.24E-07	7.94E-07	6.46E-07	3.97E-07	7.56E-07	_	The first r	ow contains i	numerical data	while it is ex	pected to	15E-06	1.37E-06	1.48E-06	1.93E-06	1.88E-06	2.17346E-06	1.63E-06	
8		P-1	9.41E-07	7.4E-07	5.02E-07	4.06E-07	7.84E-07		contain va	riable labels.				24E-06	1.34E-06	1.5E-06	2E-06	1.88E-06	2.21375E-06	1.65E-06	
9		P-1	1.36E-06	1.44E-06	1.74E-06	6.65E-07	1.03E-06		- Click "Co	ntinue" if it is	normal that s	ome or all the	labels are	2.06E-06	1.61E-06	1.77E-06	2.25E-06	3.25E-06	3.50739E-06	3.61E-06	
10		P-1	8.57E-07	6.92E-07	5.08E-07	4E-07	7.98E-07		numbers.				10.00	29E-06	1.38E-06	1.59E-06	2.16E-06	1.8E-06	1.79108E-06	1.3E-06	
11		Cys-50	3.91E-07	3.02E-07	2.61E-07	9.64E-08	1.9E-07		- Click "Ba	ck" to go bac the data sel	k to the dialog	box and mod	ify the	-3.6E-08	3.1E-07	1E-07	-1.8E-07	1.56E-07	-5.2186E-08	-4.9E-07	
12		Cys-50	3.78E-07	2.87E-07	1.99E-07	2.31E-07	3.26E-07						-	3.39E-08	2.93E-07	1.69E-07	9.09E-08	2.24E-07	1.5869E-08	-5.8E-07	
13		Cys-50	3.73E-07	3.16E-07	3.01E-07	1.08E-07	1.91E-07		XLSTAT 2018	3.2 Exc	el 14.0.4734 (32bit)	Windows 10	-1.1E-08	2.15E-07	1.33E-07	1.02E-07	3.08E-07	1.10778E-07	-5.8E-07	
14		Cys-50	3.66E-07	2.98E-07	2.74E-07	8.76E-08	1.83E-07		Build 50634					2.93E-08	2.35E-07	1.34E-07	3.42E-08	3.28E-07	1.2146E-07	-6E-07	
15		Cys-50	3.29E-07	2.89E-07	2.41E-07	5.43E-08	1.14E-07	https://w	ww.xlstat.com	1		1		-7.1E-08	2.84E-07	1.39E-07	-4.8E-08	3.23E-07	7.08E-08	-6.9E-07	
16		Cys-50	1.64E-06	1.75E-06	2.04E-06	5.17E-07	8.25E-07				ntinue	Back	Cancel	2.56E-06	1.72E-06	1.66E-06	2.19E-06	2.23E-06	2.49359E-06	2.63E-06	
17		Cys-50	2.73E-07	2.87E-07	3.25E-07	5.25E-08	1.43E-07	1.68E-07	5.26E-07	5.35E-0	1.08E-07	1.97E-07	-6.2E-08	-6.1E-10	3.03E-07	1.79E-07	3.2E-08	3.13E-07	3.31115E-07	-5E-07	
18		GSH-50	3.57E-07	3.34E-07	3.4E-07	4.91E-08	1.19E-07	2.56E-07	5.84E-07	7.06E-01	5.15E-07	1.25E-06	6.35E-07	5.15E-07	7.88E-07	6.21E-07	3.58E-07	8.38E-07	3.81165E-07	2.21E-07	
19		GSH-50	4.39E-07	4.48E-07	4.48E-07	7.6E-08	1.66E-07	3.12E-07	4.52E-07	6.57E-0	4.24E-07	7.41E-07	1.94E-07	1.73E-07	7.44E-07	6.56E-07	3.77E-07	8.02E-07	2.89307E-07	9.64E-08	
20		GSH-50	3.75E-07	4.04E-07	4.27E-07	5.34E-08	1.21E-07	2.55E-07	3.		0.005.03	-07	9.22E-08	8.48E-08	6.86E-07	6.45E-07	3.29E-07	8.53E-07	4.40369E-07	1.96E-07	
21		GSH-50	3.01E-07	3.5E-07	4.09E-07	5E-08	1.15E-07	2.63E-07	2. C	lick C	ontinu	le -07	1.52E-09	-9.5E-09	7.13E-07	7.03E-07	2.86E-07	7.94E-07	4.55017E-07	1.83E-07	
22		GSH-50	3.88E-07	4.01E-07	4.29E-07	5.71E-08	1.41E-07	3.11E-07	3.3			-07	-9.1E-08	-7.4E-08	6.65E-07	7.06E-07	4.97E-07	8.15E-07	4.62341E-07	1.71E-07	
23	_	GSH-50	1.74E-06	1.79E-06	2.06E-06	4.7E-07	8.15E-07	1.22E-06	1.48E-06	1.97E-00	5 1.97E-06	3.54E-06	3.11E-06	2.87E-06	2.04E-06	2.19E-06	2.67E-06	2.74E-06	2.87232E-06	2.97E-06	
24		GSH-50	3.23E-07	3.32E-07	3.36E-07	4.64E-08	9.4E-08	2.13E-07	3.32E-07	8.53E-0	4.95E-07	9.35E-07	1.48E-07	1.21E-07	6.35E-07	7.33E-07	3.88E-07	7.18E-07	3.36914E-07	5.68E-08	
25		Hcys-50	7.5E-07	5.29E-07	5.57E-07	3.31E-07	3.16E-07	2.61E-07	4.93E-07	3.16E-0	7 1.94E-07	8.27E-07	4.86E-07	4.63E-07	3.38E-07	2.4E-07	1.26E-07	2.84E-07	5.8899E-08	-1.4E-07	-
(+)	I DI	Sheet2	DAL	Sheet3 📣	A2 Shee	t10 DA3	Sheet11	DA4	Sheet16	DA5 Sh	eet19 DA	6/20/				_					0
Analysis	running.																		100%	1	-0

	a 19 - 0	⊎ - ∓								Report -	Microsoft Exe	el							_	0	×
		me Inser	t Page L Preparing D data +	escribing Vie data ~	sualizing Andata * d	alyzing Mod	eling Machi ta + learnin	ew Add	Ation/Associatests +	ation Parame	etric Nonpara • test	ametric Testi	ng for liers *	Advani feature	ced XLSTAT	D 3DPlot XLS	LG	X pols	6	s 🕜 🗆 (₩ X3
XLS	TAT Recen	t	(a.	Discov	ver, explain a	nd predict				Test a hy	pothesis		XLS	TAT-R							
-	•	• •		Jx	E	E	G	ш			V		M	N	0	D	0	P	c	т	
2	~	D	C.	Cu-Pc	E	F	Mn-Pc	n		GO-Cu-PC	R		rGO-Cu-P	C	0	GO-Mn-P	c	N	rGO-Mn-PC		1
3			380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	380 mV	480 mV	580 mV	
4	Replicates	P-1	6.12E-07	6.53E-07	4.61E-07	4.36E-07	8.37E-07	9.61E-07	6.36E-07	7.57E-07	8.73E-07	1.01E-06	1.13E-06	9.01E-07	9.71E-07	1.07E-06	1.72E-06	1.22E-06	1.48193E-06	1.16E-06	5
5		P-1	8.12E-07	7.85E-07	5.95E-07	3.9E-07	7.52E-07	1. XI STAT	- Selection				×	1.13E-06	1.35E-06	1.41E-06	1.91E-06	1.72E-06	1.99249E-06	1.54E-06	;
6		P-1	9.04E-07	7.99E-07	6.34E-07	4.5E-07	8.38E-07	1.	serection				~	1.12E-06	1.51E-06	1.62E-06	2.19E-06	1.8E-06	2.08923E-06	1.58E-06	; =
7		P-1	9.24E-07	7.94E-07	6.46E-07	3.97E-07	7.56E-07	9. (i)	List of sele	ctions:				1.15E-06	1.37E-06	1.48E-06	1.93E-06	1.88E-06	2.17346E-06	1.63E-06	i
8		P-1	9.41E-07	7.4E-07	5.02E-07	4.06E-07	7.84E-07	1.	Selection	name		Rows	Columns	1.24E-06	1.34E-06	1.5E-06	2E-06	1.88E-06	2.21375E-06	1.65E-06	j
9		P-1	1.36E-06	1.44E-06	1.74E-06	6.65E-07	1.03E-06	1.	Y / Quali	tative		69	1	2.06E-06	1.61E-06	1.77E-06	2.25E-06	3.25E-06	3.50739E-06	3.61E-06	i
10		P-1	8.57E-07	6.92E-07	5.08E-07	4E-07	7.98E-07	1.						1.29E-06	1.38E-06	1.59E-06	2.16E-06	1.8E-06	1.79108E-06	1.3E-06	;
11		Cys-50	3.91E-07	3.02E-07	2.61E-07	9.64E-08	1.9E-07	1.						-3.6E-08	3.1E-07	1E-07	-1.8E-07	1.56E-07	-5.2186E-08	-4.9E-07	1
12		Cys-50	3.78E-07	2.87E-07	1.99E-07	2.31E-07	3.26E-07	2.						3.39E-08	2.93E-07	1.69E-07	9.09E-08	2.24E-07	1.5869E-08	-5.8E-07	7
13		Cys-50	3.73E-07	3.16E-07	3.01E-07	1.08E-07	1.91E-07	1.	Do not	show this me	ssage anymo	re		-1.1E-08	2.15E-07	1.33E-07	1.02E-07	3.08E-07	1.10778E-07	-5.8E-07	7
14		Cys-50	3.66E-07	2.98E-07	2.74E-07	8.76E-08	1.83E-07	1.						2.93E-08	2.35E-07	1.34E-07	3.42E-08	3.28E-07	1.2146E-07	-6E-07	7
15		Cys-50	3.29E-07	2.89E-07	2.41E-07	5.43E-08	1.14E-07	8.		Contin	ue B	ack	Cancel	-7.1E-08	2.84E-07	1.39E-07	-4.8E-08	3.23E-07	7.08E-08	-6.9E-07	7
16		Cys-50	1.64E-06	1.75E-06	2.04E-06	5.17E-07	8.25E-07	9.95E-07	1.53E-06	1.79E-06	1.99E-06	3.17E-06	2.71E-06	2.56E-06	1.72E-06	1.66E-06	2.19E-06	2.23E-06	2.49359E-06	2.63E-06	5
17		Cys-50	2.73E-07	2.87E-07	3.25E-07	5.25E-08	1.43E-07	1.68E-07	5.26E-07	5.35E-07	1.08E-07	1.97E-07	-6.2E-08	-6.1E-10	3.03E-07	1.79E-07	3.2E-08	3.13E-07	3.31115E-07	-5E-07	7
18		GSH-50	3.57E-07	3.34E-07	3.4E-07	4.91E-08	1.19E-07	2.56E-07	5.84E-07	7.06E-07	5.15E-07	1.25E-06	6.35E-07	5.15E-07	7.88E-07	6.21E-07	3.58E-07	8.38E-07	3.81165E-07	2.21E-07	7
19		GSH-50	4.39E-07	4.48E-07	4.48E-07	7.6E-08	1.66E-07	3.12E-07	4.52E-07	6.57E-07	4.24E-07	7.41E-07	1.94E-07	1.73E-07	7.44E-07	6.56E-07	3.77E-07	8.02E-07	2.89307E-07	9.64E-08	1
20		GSH-50	3.75E-07	4.04E-07	4.27E-07	5.34E-08	1.21E-07	2.55E-07	3	ick C	ontinu	-07	9.22E-08	8.48E-08	6.86E-07	6.45E-07	3.29E-07	8.53E-07	4.40369E-07	1.96E-07	7
21		GSH-50	3.01E-07	3.5E-07	4.09E-07	5E-08	1.15E-07	2.63E-07	2	ien ei	Jinunia	-07	1.52E-09	-9.5E-09	7.13E-07	7.03E-07	2.86E-07	7.94E-07	4.55017E-07	1.83E-07	1
22		GSH-50	3.88E-07	4.01E-07	4.29E-07	5.71E-08	1.41E-07	3.11E-07	3.35E-07	7.11E-07	4.14E-07	5.77E-07	-9.1E-08	-7.4E-08	6.65E-07	7.06E-07	4.97E-07	8.15E-07	4.62341E-07	1.71E-07	1
23		GSH-50	1.74E-06	1.79E-06	2.06E-06	4.7E-07	8.15E-07	1.22E-06	1.48E-06	1.97E-06	1.97E-06	3.54E-06	3.11E-06	2.87E-06	2.04E-06	2.19E-06	2.67E-06	2.74E-06	2.87232E-06	2.97E-06	5
24		GSH-50	3.23E-07	3.32E-07	3.36E-07	4.64E-08	9.4E-08	2.13E-07	3.32E-07	8.53E-07	4.95E-07	9.35E-07	1.48E-07	1.21E-07	6.35E-07	7.33E-07	3.88E-07	7.18E-07	3.36914E-07	5.68E-08	1
25		Hcys-50	7.5E-07	5.29E-07	5.57E-07	3.31E-07	3.16E-07	2.61E-07	4.93E-07	3.16E-07	1.94E-07	8.27E-07	4.86E-07	4.63E-07	3.38E-07	2.4E-07	1.26E-07	2.84E-07	5.8899E-08	-1.4E-07	-
14	i 🕨 🖌 🚺	A Sheet2	DA1	Sheet3 🚺	A2 Shee	t10 DA3	Sheet11	DA4	Sheet16	DA5 She	et19 DA	6792/)	
Ana	alysis running	g												_	_	_			100% 🗩	1	-0
	0	Type here	to search			Q (נ ₩	🧿 hou	w to take a s	c 🔽	🔀 Mic	rosoft Excel	🥂 P	resentation1	📙	Unknown-p	paper	к ^е ^ 1	\$) (? E 4/	11 PM 24/2018	$\overline{}$

Step 7

Elle	17 - (Home	↓	Page Lavout	Formulas	c Data	Pavian	, View	Add-Inc	Rep	ort - Micro	osoft Excel								-		ع ×
XLSTAT	Recent	Order Prepa data	ring Describin data *	ng Visualizin data +	g Analyzing data *	g Modeling data *	Machine learning *	Correlation/Ast	ssociation	Parametric I tests +	Nonparametr tests +	ic Testing for outliers *	XLSTAT-F	Advanced features +	3D XLSTAT-3DPlot	LG XLSTAT-LG	X Tools				p 60
		v (n	<i>f</i> _x =	SERIES(,'D/	A7'!\$C\$52	1:\$K\$521,	DA7'!\$C\$	524:\$K\$524,2)													•
A	В	с	D	E	F	G	н		J	К	L	M	N	0	Р	Q	R	S	T	U	TE
1	XLSTAT	2018.2.50634	- Discrimin	ant Analys	is (DA) - S	start time:	: 4/24/201	8 at 6:11:09 PM	M												T
2	Y/Qua	litative: Work	book = Rep	ort.xlsx / S	heet = Sh	eet19/Ra	ange = She	eet19!\$B\$4:\$B	\$73 / 69 1	ows and 1	column										1
3	X/Qua	ntitative: Wo	rkbook = Re	port.xlsx /	Sheet = S	heet19/	Range = S	heet19!\$C\$4:5	ST\$73 / 65	rows and	18 column	s									
4	Within-	-class covariar	nce matrice	s are assum	ned to be	equal															
5	Prior pr	robabilities ar	e taken into	o account									1								
6	Signific	ance level (%): 5					Select axe	:5			×									
								Abscissa:		74.3 %											
7			ل ال					E1	-												
8								-													
9								Ordinates													
10								F2	•												
11	Summa	ary statistics:								_											
12									Sel	ect	Done	Help									
13	Variab	le Categories	requencie	%						•											
14	P-1	Cys 100	7	10.145																	
15		Cys 5	7	10.145																	
16		Cys-50	7	10.145																	
17		GSH 100	7	10.145				6	lick	Selec	f										
18		GSH 5	7	10.145					- North	Sciec	·										
19		GSH-50	7	10.145																	
20		Hcys 100	7	10.145																	
21		Hcys 5	7	10.145																	
22		Hcys-50	7	10.145																	
23		P-1	6	8.696																	
24																					Τ.
	DA	Sheet2 D	1 Sheet3	DA2	Sheet10	DA3 S	heet11 🗸	DA4 Sheet1	6 DA5	Sheet19	DA7	DA6 🚺 🕯								•	1
Analysis	running																III	10	0% 🖂 —		
	OT	a hara ta sa	arch		п	r 🗆 t	117	how to tal			Microrof	Evcol	Droco	station1 -	Unkno		~8	A (1))	6:1	1 PM _	-

) - (24 - -	e Incont Donal	Farmular	Data Da	view Mit		R	eport - Micros	soft Excel								-	
STAT	Recent	rder Preparing D data +	escribing Visualizing data + Discover, expl	Analyzing Model data - data ain and predict	ling Machin I* learning	e Correlatie	2 In/Associatio	n Parametric N tests + Test a hypothe	Pionparametri tests = esis	C Testing for outliers *	XLSTAT-F	Advanced features	3D XLSTAT-3DPlot	LG XLSTAT-LG	Tools	1		
		- (0	fx															
А	В	С	D	E	F		G	Н		1	1	1	К	L		М	N	0
	XLSTAT 20	J18.2.50634 - Dise	criminant Analysi	s (DA) - Start tir	ne: 4/24/20	J18 at 6:11:0	∋ PM / End	time: 4/24/2	2018 at 6:11	.:20 PM								
	Y/Qualita	ative: Workbook	= Report.xlsx / Sh	neet = Sheet19 /	Range = Sh	heet19!\$B\$:\$B\$73 / 69) rows and 1	column									7
	X / Quanti	itative: Workboo	k = Report.xlsx /	Sheet = Sheet19	/ Range =	XLSTAT - Me	sage				×							/
	Within-cla	ass covariance m	atrices are assum	ed to be equal		0	ale service of	A		VB	AC0001				_			<u>_</u>
	Prior prop	Jabilities are take	en into account				usted Public	shers							2	Drag	down	
	Summary	r statistics:	2			XI	LSTAT cannot ecause you h r because you LSTAT add th ollowing: 1. Click on "File 2. Click "Optio 3. The "Excel STAT 2018.2	add the list of r ave not added b u are not allowin re results list to t e" tab on the left ns" on the left N Options" window Excel 14.0	results at the KLSTAT to the ig VB projects the report, plu ft of the Excel /lenu. w will appear.	top of the rep trusted sourco to run. To let ase do the Ribbon. Select "Trust	vort A pes, t							
	Variable	Categories	Frequencies	%		bttps://www	d 50634		E									
	P-1	Cys 100	7	10.145	5	support@xis	at.com		Excer ver	sion	ок							
		Cys 5	7	10.145	۶ <u>۱</u>					1								
		Cys-50	7	10.145	,													
		GSH 100	7	10.145	1													
		GSH 5	7	10.145	1				_									
		GSH-50	7	10.145	<i>i</i>					Click	KOK							
		Hcys 100	7	10.145	1													
		Hcys 5	7	10.145	5													
		Hcys-50	7	10.145	<i>i</i>													
		P-1	6	8.696	<u>i</u>													
	-	and the second se		A COLORADO AND A COLO	the second se	and the second s		the second se		the second se								
► H	DA	Sheet2 DA1	Sheet3 DA2 5	Sheet10 DA3	Sheet11	DA4 Sh	eet16 DA	5 Sheet19	DA7	DA6 11						10 (751 (111	000/	

	19 - (11 -	 ▼				10		Report - M	licrosoft Excel								-		
XLSTAT	Recent	Order Pr	Page La eparing De data *	scribing Visualizin data + data +	g Analyzing Modelir data - data -	mg Machine learning *	Add-Ins XL Correlation/Associ tests *	ation Parameti tests *	ric Nonparam tests •	etric Testing for outliers +	XLSTAT-R	Advanced features *	3D XLSTAT-3DPlot	LG XLSTAT-LG	X Tools		~	8 4 9 - 6 9 8	
	A1	- (· .	fx														~	
A	В		С	D	E	F	G		н	1	J		К	L		М	N	0	
687	Obs67	Hcys 10	0	Hcys 100	0.000	0.0	00 0	.000	0.000	0.000		0.000	1.000		0.000	0.000	0.000	23.996	Stop 10
688	Obs68	Hcys 10	0	Hcys 100	0.000	0.0	00 0	.000	0.000	0.000		0.000	1.000		0.000	0.000	0.000	23.222	
689	Obs69	Hcys 10	00	Hcys 100	0.000	0.0	00 0	000	0.000	0.000		0.000	1.000		0.000	0.000	0.000	22.360	
690																			
692			1.1.2017.0	1.1211111111111111111111111111111111111			-												
693	-		Obser	vations (axes F1 and	1 F2: 74.30 %)														
694	15					1													
695	10			1	in														
696			· *	+		• Cys 100													
697	5		in	. **		• Cys5													
698				· • • · · ·		• Cys-50													
699	11.		• .3			• GSH 10													
700	(26.			Ť	· •	GSH 5													
701	£ .10			+	•	* GSH-50		_			4								
702	-15					• Hoys 10	°	_	LDA IS	s genera	itea								
703	-			:-		Hoys 5													
705	-20			† •		• Hoys-50													
706	-25					• P-1													
707		-25 -20 -	15 -10	-5 0 5 1 E4 (47 50 %)	0 15 20 25	30													
708				11 (41.03 %)															
709																			
710																		=	
711	Confus	ion matrix	for the tr	aining sample:														-	
	DA	Sheet2	DA1 S	heet3 DA2	Sheet10 DA3	Sheet11	4 Sheet16	DA5 Shee	et19 DA7	DA6								▶ []	
Ready					_							_		_		10	0% 🗩 —	-0-+	
#	Оту	be here to	search		J.	W4	how to take a s	ic 🍞	K Micros	soft Excel	Present	ation1	Unknow	wn-paper	Ŕ	へ dv))	<i>(</i> . ■ 6: 4/2	11 PM	

X 🖌	10 - (2 - ∓							For sir pres	entation Un	knowns - N	licrosoft Exc	el						12	- 0	×	
File	Home	nsert Page	Layout F	ormulas	Data Re	eview Vi	ew Add-	Ins XLST	TAT										۵ 🕜 🗆	6P 23	
	👗 Cut	Calibri	- 11	· A .	= =		Wrap	Text	General		-			-	*	Σ Auto	Sum * A				
Deste	🕞 Сору т			A A							00 Cand					Fill -	. 2	C. Find St.			
Paste	I Format Paint	er B <u>I</u>		<u>⊘</u> • <u>A</u> •			Cli		STAT	.00	+.0 Forma	tting * as Tal	ole * Styles *	Thisert L	velete Porma	Clea	r* Filte	r* Select*			
_	Clipboard	Gi .	Font	6	(Align	men CI	CKAL	SIAI	r	G.	Styles			Cells		Editing				
	A1	- (°	f _x				_													~	
1	A B	С	D	E	F	G	н	1	J	К	L	М	N	0	Р	Q	R	S	т		
1			CuPc			MnPc			GO-CuPc-F	DA		rGO-CuPc-	PDA		GO-MnPc-	PDA		rGO-MnPc	-PDA		Ston 1
2		58	0 480	380	380	480	380	380	480	380	380	480	380	380	480	380	380	480	580	_	Olep 1
3 R	eplicates A	1.68E-0	7 1.43E-07	1.55E-07	1.43E-07	2.45E-07	3.62E-07	2.02E-07	3.76E-07	6.3E-07	5.14E-07	6.93E-07	3.36E-07	5.06E-07	1.73E-07	1.75E-07	8.75E-07	4.57E-07	3.05E-07		
4	A	2.58E-0	7 1E-07	1.82E-07	1.79E-07	2.63E-07	4.76E-07	1.72E-07	3.79E-07	4.04E-07	7.61E-07	5.85E-07	5.43E-07	5.26E-07	1.89E-07	1.16E-07	8.32E-07	4.64E-07	3.16E-07	_	
5	A	1.25E-0	7 9.58E-08	1.51E-07	1.2E-07	2.51E-07	5.41E-07	1.54E-06	3.57E-07	3.98E-07	7.14E-07	5.43E-07	5.19E-08	5.06E-07	1.47E-07	1.51E-07	5.7E-07	4.61E-07	3.13E-07		
6	В	2.02E-0	7 -2E-07	-4.1E-07	2.97E-07	1.78E-07	3.92E-07	5.04E-07	1.25E-06	1.44E-06	8.77E-07	6.41E-07	9.97E-07	3.74E-07	5.95E-07	2.07E-07	9.89E-07	7.00E-07	5.91E-07	_	
7	В	2.38E-0	8 -9.06E-08	3.23E-07	3.84E-07	1.97E-07	3.7E-07	5.25E-07	1.15E-06	1.47E-06	1.12E-06	6.28E-07	1.15E-06	3.77E-07	4.23E-07	1.33E-07	1.06E-06	1.02E-06	8.95E-07		
8	В	2.51E-0	7 -3.6E-07	7.56E-07	2.17E-07	5.55E-07	3.27E-07	5.74E-07	1.49E-06	2.07E-06	1.23E-06	7.13E-07	8.96E-07	1.02E-07	5.54E-07	3.02E-08	6.23E-07	1.26E-07	1.00E-07	_	
9	0	8.2/E-0	/ /.4E-0/	5.94E-07	4.69E-07	4.29E-07	2.51E-07	4.48E-07	3.02E-07	1.48E-07	8.08E-07	6E-07	5.00E-07	2.38E-07	2.42E-07	1.14E-07	2.7/E-08	1.14E-07	-5.3E-07	_	
10	0	8.01E-0	7 6.225.07	5.12E-07	4.81E-07	4./3E-07	2.7E-07	3.8E-07	2.91E-07	1.8E-07	9.03E-07	5.14E-07	4.85E-07	3.24E-07	2.4E-07	2.69E-07	2.93E-07	1.2E-07	-5.8E-07	_	
12	P.1	6 125-0	7 6 525-07	4.615-07	4.202-07	9.275-07	9.615-07	4.00E-07	4.516-07	2.432-07	1.015-06	1.125-06	9.015-07	9 715-07	1.075-06	1.032-07	1.225-06	1.495-06	1 165-06	_	
12	P.1	0.120-0	7 7 955.07	5.055.07	2 95.07	7.525.07	1.025.06	0.302-07	1 195.06	1 195.06	1.45.06	1.132-00	1 125.06	1 255.06	1.415-06	1.915.06	1.725-06	1.402-00	1.545.06	_	
14	P.1	9.045-0	7 7 995-07	6 34E-07	4 55-07	8 385-07	1.02E-00	1.035-06	1.255-06	1.102-00	1.465-06	1.365-00	1.125-00	1.515-00	1.412-00	2 195-06	1.722-00	2.095-06	1.545-06	_	
15	P.1	9.245-0	7 7 945-07	6.46E-07	3 97E-07	7.56E-07	9 785-07	9.685-07	1.252-00	1 165-06	1.455-06	1.38E-06	1.155-06	1.37E-06	1.02E-00	1.935-06	1.88E-06	2.05E-00	1.63E-06	_	
16	P.1	9.415-0	7 745-07	5.02E-07	4.065-07	7.84E-07	1.025-06	9 995-07	1 295-06	1.26E-06	1.445-06	1.43E-06	1 245-06	1 345-06	1.55-06	2E-06	1 88E-06	2 21E-06	1.655-06	_	
17	P-1	1.36E-0	6 1.44E-06	1.74E-06	6.65E-07	1.03E-06	1.29E-06	1.32E-06	1.68E-06	1.74E-06	2.25E-06	2.13E-06	2.06E-06	1.61E-06	1.77E-06	2.25E-06	3.25E-06	3.51E-06	3.61E-06		
18	P-1	8.57E-0	7 6.92E-07	5.08E-07	4E-07	7.98E-07	1.02E-06	9.52E-07	1.28E-06	1.22E-06	1.56E-06	1.45E-06	1.29E-06	1.38E-06	1.59E-06	2.16E-06	1.8E-06	1.79E-06	1.3E-06	_	
19	Cvs	3.91E-0	7 3.02E-07	2.61E-07	9.64E-08	1.9E-07	1.99E-07	4.86E-07	3.96E-07	-1.5E-08	2.04E-07	-6.4E-08	-3.6E-08	3.1E-07	1E-07	-1.8E-07	1.56E-07	-5.2E-08	-4.9E-07	_	
20	Cvs	3.78E-0	7 2.87E-07	1.99E-07	2.31E-07	3.26E-07	2.96E-07	8.25E-07	6.8E-07	3.01E-07	2.67E-07	3.06E-10	3.39E-08	2.93E-07	1.69E-07	9.09E-08	2.24E-07	1.59E-08	-5.8E-07	_	
21	Cvs	3.73E-0	7 3.16E-07	3.01E-07	1.08E-07	1.91E-07	1.79E-07	4.86E-07	3.96E-07	-1.5E-08	2.17E-07	-4.9E-08	-1.1E-08	2.15E-07	1.33E-07	1.02E-07	3.08E-07	1.11E-07	-5.8E-07		
22	Cvs	3.66E-0	7 2.98E-07	2.74E-07	8.76E-08	1.83E-07	1.65E-07	4.76E-07	4.17E-07	-4.5E-08	3.4E-07	-1E-08	2.93E-08	2.35E-07	1.34E-07	3.42E-08	3.28E-07	1.21E-07	-6E-07		
23	Cys	3.29E-0	7 2.89E-07	2.41E-07	5.43E-08	1.14E-07	8.54E-08	4.54E-07	4.19E-07	-3E-08	1.15E-07	-1.3E-07	-7.1E-08	2.84E-07	1.39E-07	-4.8E-08	3.23E-07	7.08E-08	-6.9E-07		
24	Cys	1.64E-0	6 1.75E-06	2.04E-06	5.17E-07	8.25E-07	9.95E-07	1.53E-06	1.79E-06	1.99E-06	3.17E-06	2.71E-06	2.56E-06	1.72E-06	1.66E-06	2.19E-06	2.23E-06	2.49E-06	2.63E-06		
	Circ	0 705 0	7 3 0 75 0 7	3 355 07	F 355 00	1 435 07	1 000 07	F 925 07	F 355 07	1 005 07	1.075.07		C 17 10	2 025 07	1 705 07	3 35 00	2 125 07	2 215 07	FF.07		
Ready	Sileeti	<u></u>																100%		+	
and a start	0								-	_		_							10:03 AM		
1	O Type h	ere to search			Ų (1 W	9	P 2	S Microsof	t Excel - F	Sc	reenshots					8 ⁴ ^ (4/26/2018		

Step wise procedure for generating LDA score plot shown in Figure 11b.

Red Box: Contains difference in current value at particular potential (380 mV, 480mV and 580 mV) obtained from the LSV. **Green Box**: Shows the label of the replicates. **Black Box**: Shows the name the electrode used as working electrode.

	Hor	∽ ↓	rt Pagela	wout Fr	ormulas	Data Pr	view Vie	ew Add	For sir pre	sentation Un	knowns - N	licrosoft Exc	el						-	- 0	X		
XLST	AT Recent	Order	Preparing De	escribing Vis data + Discov	cualizing Ana data - di er, explain a	alyzing Mode ata - predict	eling Machin a * learnin	ne Correla	2 ation/Associa tests *	ation Parame tests Test a hyp	tric Nonpara test	ametric Testin s * outl	ng for iers * XLST	Advance feature	ed XLSTAT-	D I 3DPlot XLS	LG	V ols					
_	A1		(n	fx	An	alyzing data															~		
1	A	В	С	CI	ick An	nalyzin	ig data	1 ^H	1	J	K	L,	M	N	0	P	Q	R	S CO MaDa	T			
2			280	480	580	280	480	580	380	GO-CUPC-	2DA 580	290	rGO-CUPC-	PDA 590	280	GO-MINPC-	PDA 580	280	rGO-MhPC	-PDA 590	- 1		
3	Replicates	A	1.68E-07	1.43E-07	1.55E-07	1.43E-07	2.45E-07	3.62E-07	2.02E-07	3.76E-07	6.3E-07	5.14E-07	6.93E-07	3.36E-07	5.06E-07	1.73E-07	1.75E-07	8.75E-07	4.57E-07	3.05E-07			
4		A	2.58E-07	1E-07	1.82E-07	1.79E-07	2.63E-07	4.76E-07	1.72E-07	3.79E-07	4.04E-07	7.61E-07	5.85E-07	5.43E-07	5.26E-07	1.89E-07	1.16E-07	8.32E-07	4.64E-07	3.16E-07		_	
5		A	1.25E-07	9.58E-08	1.51E-07	1.2E-07	2.51E-07	5.41E-07	1.54E-06	3.57E-07	3.98E-07	7.14E-07	5.43E-07	5.19E-08	5.06E-07	1.47E-07	1.51E-07	5.7E-07	4.61E-07	3.13E-07			
6		В	2.02E-07	-2E-07	-4.1E-07	2.97E-07	1.78E-07	3.92E-07	5.04E-07	1.25E-06	1.44E-06	8.77E-07	6.41E-07	9.97E-07	3.74E-07	5.95E-07	2.07E-07	9.89E-07	7.00E-07	5.91E-07		5	step 2
7		В	2.38E-08	-9.06E-08	3.23E-07	3.84E-07	1.97E-07	3.7E-07	5.25E-07	1.15E-06	1.47E-06	1.12E-06	6.28E-07	1.15E-06	3.77E-07	4.23E-07	1.33E-07	1.06E-06	1.02E-06	8.95E-07		_	
8		В	2.51E-07	-3.6E-07	7.56E-07	2.17E-07	5.55E-07	3.27E-07	5.74E-07	1.49E-06	2.07E-06	1.23E-06	7.13E-07	8.96E-07	1.02E-07	5.54E-07	3.02E-08	6.23E-07	1.26E-07	1.00E-07			
9		C	8.27E-07	7.4E-07	5.94E-07	4.69E-07	4.29E-07	2.51E-07	4.48E-07	3.02E-07	1.48E-07	8.08E-07	6E-07	5.00E-07	2.38E-07	2.42E-07	1.14E-07	2.77E-08	1.14E-07	-5.3E-07	_		
10		C	8.01E-07	7.78E-07	5.12E-07	4.81E-07	4.73E-07	2.7E-07	3.8E-07	2.91E-07	1.8E-07	9.03E-07	5.14E-07	4.85E-07	3.24E-07	2.4E-07	2.69E-07	2.93E-07	1.2E-07	-5.8E-07	_		
11		C D 1	7.44E-07	6.22E-07	6.1E-07	4.26E-07	4.12E-07	2.27E-07	4.06E-07	4.91E-07	2.45E-07	8.61E-07	4.46E-07	4.25E-07	3.1E-07	2.75E-07	1.03E-07	3.7E-07	9.02E-08	-5.5E-07	_		
12		P-I	6.12E-07	6.53E-07	4.61E-07	4.36E-07	8.3/E-0/	9.61E-07	6.36E-07	7.5/E-0/	8.73E-07	1.01E-06	1.13E-06	9.01E-07	9.71E-07	1.0/E-06	1.72E-06	1.22E-06	1.48E-06	1.162-06	- 1		
13		P-1	8.12E-07	7.85E-07	5.95E-07	3.9E-07	7.52E-07	1.02E-00	9.83E-07	1.185-00	1.185-00	1.465.06	1.385-00	1.13E-00	1.352-00	1.412-00	1.912-00	1.72E-00	1.995-00	1.54E-00	_		
14		P.1	9.245-07	7.945-07	6.46E-07	2.975-07	7.565-07	9.795-07	9.695-07	1.252-00	1 165-06	1.402-00	1.302-00	1.122-00	1.375-06	1.022-00	1.925-06	1.825-06	2.032-00	1.585-00	_		
16		P.1	9.415-07	7.45-07	5.02E-07	4.065-07	7.845-07	1.025-06	9.995-07	1.205-06	1.265-06	1.445-06	1.435-06	1.245-06	1.345-06	1.402-00	2E-06	1.885-06	2.215-06	1.65E-06			
17		P-1	1.36E-06	1.44E-06	1.74E-06	6.65E-07	1.03E-06	1.29E-06	1.32E-06	1.68E-06	1.74E-06	2.25E-06	2.13E-06	2.06E-06	1.61E-06	1.77E-06	2.25E-06	3.25E-06	3.51E-06	3.61E-06			
18		P-1	8.57E-07	6.92E-07	5.08E-07	4E-07	7.98E-07	1.02E-06	9.52E-07	1.28E-06	1.22E-06	1.56E-06	1.45E-06	1.29E-06	1.38E-06	1.59E-06	2.16E-06	1.8E-06	1.79E-06	1.3E-06			
19		Cys	3.91E-07	3.02E-07	2.61E-07	9.64E-08	1.9E-07	1.99E-07	4.86E-07	3.96E-07	-1.5E-08	2.04E-07	-6.4E-08	-3.6E-08	3.1E-07	1E-07	-1.8E-07	1.56E-07	-5.2E-08	-4.9E-07			
20		Cys	3.78E-07	2.87E-07	1.99E-07	2.31E-07	3.26E-07	2.96E-07	8.25E-07	6.8E-07	3.01E-07	2.67E-07	3.06E-10	3.39E-08	2.93E-07	1.69E-07	9.09E-08	2.24E-07	1.59E-08	-5.8E-07			
21		Cys	3.73E-07	3.16E-07	3.01E-07	1.08E-07	1.91E-07	1.79E-07	4.86E-07	3.96E-07	-1.5E-08	2.17E-07	-4.9E-08	-1.1E-08	2.15E-07	1.33E-07	1.02E-07	3.08E-07	1.11E-07	-5.8E-07			
22		Cys	3.66E-07	2.98E-07	2.74E-07	8.76E-08	1.83E-07	1.65E-07	4.76E-07	4.17E-07	-4.5E-08	3.4E-07	-1E-08	2.93E-08	2.35E-07	1.34E-07	3.42E-08	3.28E-07	1.21E-07	-6E-07			
23		Cys	3.29E-07	2.89E-07	2.41E-07	5.43E-08	1.14E-07	8.54E-08	4.54E-07	4.19E-07	-3E-08	1.15E-07	-1.3E-07	-7.1E-08	2.84E-07	1.39E-07	-4.8E-08	3.23E-07	7.08E-08	-6.9E-07			
24		Cys	1.64E-06	1.75E-06	2.04E-06	5.17E-07	8.25E-07	9.95E-07	1.53E-06	1.79E-06	1.99E-06	3.17E-06	2.71E-06	2.56E-06	1.72E-06	1.66E-06	2.19E-06	2.23E-06	2.49E-06	2.63E-06			
14 4	► ► She	et1 PJ		2.075.07	2 255 07	F 255 00	1 435 07	1 000 07	F 200 07	C 255 07	1 005 07	1 075 07	11	C 17 10	2 025 07	1 705 07	2.25.00	2 425 07	2 245 07		•		
Rea	dy																		100% 😑	0	+		
6	0	ype here	to search			Q (נן ₩	9	-	😽 Microsof	it Excel - F	Sc	reenshots					я ⁸ ^ 1	t)) <i>(ii</i> : 🗈	10:03 AM 4/26/2018	5		

	me insen	t Page La	yout Fo	ormulas	Data	Review V	iew Add	I-Ins XLST	AT										۵ 🕜 🗅	22 6	
> 🕑) 🦉	No.	h	•	×	× 🕹		?		?			R +	30	L	G	<				
• •	Order	Preparing De	escribing Vis	sualizing A	nalyzing Mo	deling Mach	ine Correl	ation/Associat	ion Parame	tric Nonpara	metric Testin	ng for	Advanc	ed XLSTAT-	DPlot XLST	AT-LG To	ols				
STAT Recen	nt	uata ·	Discov	er, explai	fa Factor a	mahyric	ig ·	1005	Test a hyp	othesis	outi	XLST	AT-R								
Δ1		(n	fx		D Princing	Component	Apphysic (DC	A)												~	
	D	C			Discrim	n component	Analysis (FC	-1		V			NI	0	D	0	P	c	т	, =	
A	•	C	CuBo	~	Distrim	nanc Analysis			SO CURC D		L		DDA	0	CO MoRe	PDA .	n	rGO MnBc	PDA	· •	
Cha		-	480		Corresp	ondence Ana	lysis (CA)		480	580	380	480	580	380	480	580	380	480	580		
Choo	ose DA	-07	1.43E-07	1.55E	Multipl	e Correspond	ence Analysis	(MCA)	3.76E-07	6.3E-07	5.14E-07	6.93E-07	3.36E-07	5.06E-07	1.73E-07	1.75E-07	8.75E-07	4.57E-07	3.05E-07		
	A	2.58E-07	1E-07	1.82E	os Multidi	mensional Sca	ling (MDS)		3.79E-07	4.04E-07	7.61E-07	5.85E-07	5.43E-07	5.26E-07	1.89E-07	1.16E-07	8.32E-07	4.64E-07	3.16E-07	_	Sten
	A	1.25E-07	9.58E-08	1.51E	Principa	I Coordinate	Analysis		3.57E-07	3.98E-07	7.14E-07	5.43E-07	5.19E-08	5.06E-07	1.47E-07	1.51E-07	5.7E-07	4.61E-07	3.13E-07		Otop
	В	2.02E-07	-2E-07	-4.1E	k-mean	s clustering			1.25E-06	1.44E-06	8.77E-07	6.41E-07	9.97E-07	3.74E-07	5.95E-07	2.07E-07	9.89E-07	7.00E-07	5.91E-07		
	В	2.38E-08	-9.06E-08	3.23E	Agglom	erative hierar	chical cluster	ing (AHC)	1.15E-06	1.47E-06	1.12E-06	6.28E-07	1.15E-06	3.77E-07	4.23E-07	1.33E-07	1.06E-06	1.02E-06	8.95E-07		
	В	2.51E-07	-3.6E-07	7.56E	Gaussia	n Mixture Mo	dels		1.49E-06	2.07E-06	1.23E-06	7.13E-07	8.96E-07	1.02E-07	5.54E-07	3.02E-08	6.23E-07	1.26E-07	1.00E-07		
	С	8.27E-07	7.4E-07	5.94E	Univaria	te clustering			3.02E-07	1.48E-07	8.08E-07	6E-07	5.00E-07	2.38E-07	2.42E-07	1.14E-07	2.77E-08	1.14E-07	-5.3E-07		
1	С	8.01E-07	7.78E-07	5.12E-0	/ 4.81E-0	/ 4./3E-U/	2./E-U/	3.8E-07	2.91E-07	1.8E-07	9.03E-07	5.14E-07	4.85E-07	3.24E-07	2.4E-07	2.69E-07	2.93E-07	1.2E-07	-5.8E-07		
	С	7.44E-07	6.22E-07	6.1E-0	7 4.26E-0	7 4.12E-07	2.27E-07	4.06E-07	4.91E-07	2.45E-07	8.61E-07	4.46E-07	4.25E-07	3.1E-07	2.75E-07	1.03E-07	3.7E-07	9.02E-08	-5.5E-07		
1	P-1	6.12E-07	6.53E-07	4.61E-0	7 4.36E-0	7 8.37E-07	9.61E-07	6.36E-07	7.57E-07	8.73E-07	1.01E-06	1.13E-06	9.01E-07	9.71E-07	1.07E-06	1.72E-06	1.22E-06	1.48E-06	1.16E-06		
1	P-1	8.12E-07	7.85E-07	5.95E-0	7 3.9E-0	7 7.52E-07	1.02E-06	9.83E-07	1.18E-06	1.18E-06	1.4E-06	1.38E-06	1.13E-06	1.35E-06	1.41E-06	1.91E-06	1.72E-06	1.99E-06	1.54E-06		
1	P-1	9.04E-07	7.99E-07	6.34E-0	7 4.5E-0	7 8.38E-07	1.08E-06	1.03E-06	1.25E-06	1.2E-06	1.46E-06	1.36E-06	1.12E-06	1.51E-06	1.62E-06	2.19E-06	1.8E-06	2.09E-06	1.58E-06		
	P-1	9.24E-07	7.94E-07	6.46E-0	7 3.97E-0	7 7.56E-07	9.78E-07	9.68E-07	1.2E-06	1.16E-06	1.45E-06	1.38E-06	1.15E-06	1.37E-06	1.48E-06	1.93E-06	1.88E-06	2.17E-06	1.63E-06		
1	P-1	9.41E-07	7.4E-07	5.02E-0	7 4.06E-0	7 7.84E-07	1.02E-06	9.99E-07	1.29E-06	1.26E-06	1.44E-06	1.43E-06	1.24E-06	1.34E-06	1.5E-06	2E-06	1.88E-06	2.21E-06	1.65E-06		
1	P-1	1.36E-06	1.44E-06	1.74E-0	6 6.65E-0	7 1.03E-06	1.29E-06	1.32E-06	1.68E-06	1.74E-06	2.25E-06	2.13E-06	2.06E-06	1.61E-06	1.77E-06	2.25E-06	3.25E-06	3.51E-06	3.61E-06		
1	P-1	8.57E-07	6.92E-07	5.08E-0	7 4E-0	7 7.98E-07	1.02E-06	9.52E-07	1.28E-06	1.22E-06	1.56E-06	1.45E-06	1.29E-06	1.38E-06	1.59E-06	2.16E-06	1.8E-06	1.79E-06	1.3E-06		
j	Cys	3.91E-07	3.02E-07	2.61E-0	7 9.64E-0	8 1.9E-07	1.99E-07	4.86E-07	3.96E-07	-1.5E-08	2.04E-07	-6.4E-08	-3.6E-08	3.1E-07	1E-07	-1.8E-07	1.56E-07	-5.2E-08	-4.9E-07		
j .	Cys	3.78E-07	2.87E-07	1.99E-0	7 2.31E-0	7 3.26E-07	2.96E-07	8.25E-07	6.8E-07	3.01E-07	2.67E-07	3.06E-10	3.39E-08	2.93E-07	1.69E-07	9.09E-08	2.24E-07	1.59E-08	-5.8E-07		
	Cys	3.73E-07	3.16E-07	3.01E-0	7 1.08E-0	7 1.91E-07	1.79E-07	4.86E-07	3.96E-07	-1.5E-08	2.17E-07	-4.9E-08	-1.1E-08	2.15E-07	1.33E-07	1.02E-07	3.08E-07	1.11E-07	-5.8E-07		
1	Cys	3.66E-07	2.98E-07	2.74E-0	7 8.76E-0	8 1.83E-07	1.65E-07	4.76E-07	4.17E-07	-4.5E-08	3.4E-07	-1E-08	2.93E-08	2.35E-07	1.34E-07	3.42E-08	3.28E-07	1.21E-07	-6E-07		
1	Cys	3.29E-07	2.89E-07	2.41E-0	7 5.43E-0	8 1.14E-07	8.54E-08	4.54E-07	4.19E-07	-3E-08	1.15E-07	-1.3E-07	-7.1E-08	2.84E-07	1.39E-07	-4.8E-08	3.23E-07	7.08E-08	-6.9E-07		
	Cys	1.64E-06	1.75E-06	2.04E-0	6 5.17E-0	7 8.25E-07	9.95E-07	1.53E-06	1.79E-06	1.99E-06	3.17E-06	2.71E-06	2.56E-06	1.72E-06	1.66E-06	2.19E-06	2.23E-06	2.49E-06	2.63E-06		
A N N Ch	Cur P1		2 075 07	2 255 0			1 000 00	F 965 07	F 355 07	1 005 07	1.075.07		C 15 10	2 025 07	1 705 07	2 25 00	0.105.07	2 245 07		× 11	
ady	reet1 (CJ /																	100%	0	+	
											1.0								10:03 AM		
± O	Type here t	to search			Ļ		9	F	Microsof	t Excel - F	Sc	reenshots					x ⁴ ^ 1	() () ()	4/26/2018		

For sir presentation Unknowns - Microsoft Excel

🗶 | 🛃 10 - (21 -) =

S46

- 🛛 ×

	-) - (-	+ -							For sir pre	esentation Un	knowns - N	licrosoft Exc	el							-	- 0	
File	Hom	ie Inse	rt Page La	yout Fo	rmulas	Data Re	view	View Add	-Ins XLS	TAT											۵ 🕜 🗆	23 9
>		1	Part and a start of the start o		()	× /	/	80	?		?) 7	R	F	3D	LG	X				
	-	Order	Preparing De	scribing Vis	ualizing Ana	lyzing Mod	ling Mac	hine Correla	ation/Associ	ation Parame	tric Nonpara	metric Testi	ng for	Adva	inced XLST	T-3DPlot	LSTAT-LG	Tools				
			data *	data - o	data 👻 da	ata - dat	a v learn	ning -	tests *	tests	test	s • outi	iers •	feat	ires *	*	*	*				
LSIA	Recent		6	Discovi	er, explain ar	nd predict				lest a hyp	othesis		XLSI	AI-R								
_	B3		. (**	Ĵx .											-							*
1	А	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	Р	Q		R	S	Т	L_
				CuPc			MnPc			GO-CuPc-	PDA		rGO-CuPc	-PDA		GO-MnF	Pc-PDA		r	SO-MnPc	-PDA	
			380	480	580	380	48	0 580	380	480	580	380	480	58	30 31	48	80	580	380	480	580	_
Re	eplicates	A	1.68E-07	1.43E-07	1.55E-07	1.43E-07	2.45E	iscriminant Ar	alysis (DA)					× -0	07 5.06E-0	07 1.73E-0	07 1.758	E-07 8.1	75E-07 4	4.57E-07	3.05E-07	- 1
-	7	A	2.58E-07	1E-07	1.82E-07	1.79E-07	2.63E	Seneral Optio	ns Validatio	n Prediction	Missing dat	ta Outputs	Charts	-0	07 5.26E-0	07 1.89E-0	07 1.168	-07 8.3	32E-07 4	4.64E-07	3.16E-07	
-	/	A	1.25E-07	9.58E-08	1.51E-07	1.2E-07	2.51E Y	/ Dependent v	ariables:		C Range	:			08 5.06E-0	07 1.47E-0	1.518	-07 5	.7E-07 4	4.61E-07	3.13E-07	
	/	B	2.02E-07	-2E-07	-4.1E-07	2.97E-07	1.788	Qualitative:			Sheet			-0	07 3.74E-0	5.95E-0	07 2.078	E-07 9.8	39E-07	7.00E-07	5.91E-07	
		В	2.38E-08	-9.06E-08	3.23E-07	3.84E-07	1.97E	Sheet1!\$8\$3:	\$8\$81	-	C Workb	ook		-0	06 3.77E-0	4.23E-0	07 1.338	E-07 1.0	06E-06	1.02E-06	8.95E-07	_
н	S	В	2.51E-07	-3.6E-07	7.56E-07	2.17E-07	5.55E x	/Explanatory	variables:		Variab	e labels		-0	07 1.02E-0	7 5.54E-0	3.028	E-08 6.2	23E-07	1.26E-07	1.00E-07	_
	e e	С	8.27E-07	7.4E-07	5.94E-07	4.69E-07	4.29E	Quantitative			C Observ	ation labels:		-0	07 2.38E-0	07 2.42E-0	07 1.148	E-07 2.1	77E-08	1.14E-07	-5.3E-07	_
н	ab	С	8.01E-07	7.78E-07	5.12E-07	4.81E-07	4.73E	quantum							07 3.24E-0	07 2.4E-0	2.698	E-07 2.9	93E-07	1.2E-07	-5.8E-07	
H		С	7.44E-07	6.22E-07	6.1E-07	4.26E-07	4.12E			-					07 3.1E-0	07 2.75E-0	07 1.038	E-07 3	.7E-07	9.02E-08	-5.5E-07	_
Н	- S	P-1	6.12E-07	6.53E-07	4.61E-07	4.36E-07	8.37E	Qualitative:			Obser	vation weight	s:		07 9.71E-0	07 1.07E-0	06 1.728	E-06 1.2	22E-06	1.48E-06	1.16E-06	_
	t L	P-1	8.12E-07	7.85E-07	5.95E-07	3.9E-07	7.52E			-					06 1.35E-0	6 1.41E-0	06 1.918	E-06 1.7	72E-06	1.99E-06	1.54E-06	_
	er ur	P-1	9.04E-07	7.99E-07	6.34E-07	4.5E-07	8.38E							-(06 1.51E-0	1.62E-0	06 2.198	E-06 1	.8E-06	2.09E-06	1.58E-06	_
	5 0	P-1	9.24E-07	7.94E-07	6.46E-07	3.97E-07	7.56E	3 🖉 🔻	1	Γ	OK	Cancel	н	elo -	06 1.37E-0	6 1.48E-0	06 1.938	E-06 1.8	38E-06	2.17E-06	1.63E-06	_
	υLa	P-1	9.41E-07	7.4E-07	5.02E-07	4.06E-07	7.84E			L					06 1.34E-0	06 1.5E-0	06 28	E-06 1.8	38E-06	2.21E-06	1.65E-06	_
	b st	P-1	1.36E-06	1.44E-06	1.74E-06	6.65E-07	1.03E-0	1.29E-06	1.32E-06	1.68E-06	1.74E-06	2.25E-06	2.13E-06	2.06E-0	06 1.61E-0	6 1.77E-0	06 2.258	E-06 3.2	25E-06	3.51E-06	3.61E-06	
	de	P-1	8.57E-07	6.92E-07	5.08E-07	4E-07	7.98E-0	07 1.02E-06	9.52E-07	1.28E-06	1.22E-06	1.56E-06	1.45E-06	1.29E-0	06 1.38E-0	6 1.59E-0	06 2.168	E-06 1	.8E-06	1.79E-06	1.3E-06	
	a	Cys	3.91E-07	3.02E-07	2.61E-07	9.64E-08	1.9E-0	7 1.99E-07	4.86E-07	3.96E-07	-1.5E-08	2.04E-07	-6.4E-08	-3.6E-0	08 3.1E-0	7 1E-0	07 -1.88	E-07 1.5	56E-07	-5.2E-08	-4.9E-07	
	tib	Cys	3.78E-07	2.87E-07	1.99E-07	2.31E-07	3.26E-0	07 2.96E-07	8.25E-07	6.8E-07	3.01E-07	2.67E-07	3.06E-10	3.39E-0	08 2.93E-0	7 1.69E-0	9.098	E-08 2.2	24E-07	1.59E-08	-5.8E-07	
	â	Cys	3.73E-07	3.16E-07	3.01E-07	1.08E-07	1.91E-0	07 1.79E-07	4.86E-07	3.96E-07	-1.5E-08	2.17E-07	-4.9E-08	-1.1E-0	08 2.15E-0	7 1.33E-0	07 1.028	E-07 3.0	08E-07	1.11E-07	-5.8E-07	
	3 ×	Cys	3.66E-07	2.98E-07	2.74E-07	8.76E-08	1.83E-0	07 1.65E-07	4.76E-07	4.17E-07	-4.5E-08	3.4E-07	-1E-08	2.93E-0	08 2.35E-0	7 1.34E-0	3.428	E-08 3.2	28E-07	1.21E-07	-6E-07	
	E E	Cys	3.29E-07	2.89E-07	2.41E-07	5.43E-08	1.14E-0	7 8.54E-08	4.54E-07	4.19E-07	-3E-08	1.15E-07	-1.3E-07	-7.1E-0	08 2.84E-0	7 1.39E-0	-4.88	E-08 3.2	23E-07	7.08E-08	-6.9E-07	
	5 S	Cys	1.64E-06	1.75E-06	2.04E-06	5.17E-07	8.25E-0	9.95E-07	1.53E-06	1.79E-06	1.99E-06	3.17E-06	2.71E-06	2.56E-0	06 1.72E-0	6 1.66E-0	06 2.198	E-06 2.2	23E-06	2.49E-06	2.63E-06	
	N Sho	Cur en	1	2 075 07	2 255 07	F 955 00	1 435 0	1	F 965 97	F 255 07	1 005 07	1 075 07		C 45 -	2 2 2 2 2	1 705 /			- 50 30			N II
scrip	ninant Anal	Ivsis (DA)																m		100%		+
a altri										-					_					0	10:04 AM	

Step 4

51.	u) ↓ (u ·	* ∓	nt Dresta		en de c	Data D		Add	For sir prese	entation Uni	knowns - N	licrosoft Exc	el						_	- 0 - 0 -) -
rite	nome	inse	en Page La	syout Fo				ew Add	-ins XLSIA		?	6		• +	21		G	1		ω 😗 🗆	(B)
/	9	Order	Preparing D			No Mod		Correli	tion (Arrocisti	ion Paramet	Tic Nonpara	matric Tartin		Advance	TATELY DE	RDPlat VIS					
*	•	order	data *	data * (iata * da	ata - dat	a * learnin	g*	tests *	tests *	tests	• outl	ers *	features	· ALSIAI-	DEFICI ALS	*	*			
STAT	Recent			Discov	er, explain ar	nd predict				Test a hyp	othesis		XLSTAT	T-R							
_			• (*	fx																	
_	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	Р	Q	R	S	Т	
				CuPc			MnPc		0	SO-CuPc-P	DA		rGO-CuPc-P	DA		GO-MnPc-	PDA		rGO-MnPc	PDA	
		٨	380	480	580	380	480	580	380	480	580	380	480	580	380	480	580	380	480	580	
Rep	licates A	A .	1.68E-07	1.43E-07	1.55E-07	1.43E-07	2.45E-07	XLSTAT - N	Message				×	3.36E-07	5.06E-07	1.73E-07	1.75E-07	8.75E-07	4.57E-07	3.05E-07	
	1	A .	2.58E-07	0.500.00	1.82E-07	1.79E-07	2.03E-07					- 1	DSCIRG01	10E.09	5.202-07	1.89E-07	1.10E-07	5.32E-07	4.04E-07	3.10E-07	
	í	R	2.025.07	3.382-08	1.512-07	2.975.07	1 795 07		X / Quantita	ative				0.192-00	3.002-07	5.955.07	2.075.07	0.90E.07	4.012-07	5.015.07	
	-	B	2.022-07	-9.065-09	2 225-07	2.975-07	1.785-07		The first row	v contains nu able labels.	merical data,	while it is exp	ected to 🔺	155.06	2 775-07	4 225-07	1 225-07	1.055-06	1.025-05	9.955-07	
	i	B	2.502-00	-2.65-07	7 565-07	2 175-07	5 555-07							965-07	1.025-07	5.545-07	2.025-09	6.225-07	1.020-00	1.005-07	
		C	8.27E-07	7.4E-07	5.94E-07	4.69E-07	4.29E-07		- Click Cont numbers.	inue" if it is n	ormal that so	me or all the	abels are	00E-07	2.38E-07	2.42E-07	1.14E-07	2.77E-08	1.14E-07	-5.3E-07	
	(c	8.01E-07	7.78E-07	5.12E-07	4.81E-07	4.73E-07		- Click "Back"	to on back t	to the dialog	how and mod	fy the	.85E-07	3.24E-07	2.4E-07	2.69E-07	2.93E-07	1.2E-07	-5.8E-07	
	0	C	7.44E-07	6.22E-07	6.1E-07	4.26E-07	4.12E-07		options or th	ne data selec	tion.	Jox and mou		.25E-07	3.1E-07	2.75E-07	1.03E-07	3.7E-07	9.02E-08	-5.5E-07	
	1	P-1	6.12E-07	6.53E-07	4.61E-07	4.36E-07	8.37E-07		AL. 10		a		•	0.01E-07	9.71E-07	1.07E-06	1.72E-06	1.22E-06	1.48E-06	1.16E-06	
	1	P-1	8.12E-07	7.85E-07	5.95E-07	3.9E-07	7.52E-07		XLSTAT 2018.	2 Excel	14.0.4734 (32bit)	Windows 10	.13E-06	1.35E-06	1.41E-06	1.91E-06	1.72E-06	1.99E-06	1.54E-06	
	1	P-1	9.04E-07	7.99E-07	6.34E-07	4.5E-07	8.38E-07		Build 50634					.12E-06	1.51E-06	1.62E-06	2.19E-06	1.8E-06	2.09E-06	1.58E-06	
	1	P-1	9.24E-07	7.94E-07	6.46E-07	3.97E-07	7.56E-07	https://ww	w.xistat.com	Cont	tinue	Back	Cancel	1.15E-06	1.37E-06	1.48E-06	1.93E-06	1.88E-06	2.17E-06	1.63E-06	
	1	P-1	9.41E-07	7.4E-07	5.02E-07	4.06E-07	7.84E-07	1.02E-06	9.99E-07	1.29E-0	1.26E-06	1.44E-06	1.43E-06	1.24E-06	1.34E-06	1.5E-06	2E-06	1.88E-06	2.21E-06	1.65E-06	
	1	P-1	1.36E-06	1.44E-06	1.74E-06	6.65E-07	1.03E-06	1.29E-06	1.32E-06	1.68E-06	1.74E-06	2.25E-06	2.13E-06	2.06E-06	1.61E-06	1.77E-06	2.25E-06	3.25E-06	3.51E-06	3.61E-06	
	1	P-1	8.57E-07	6.92E-07	5.08E-07	4E-07	7.98E-07	1.02E-06	9.52E-07	1.28E-06	1.22E-06	1.56E-06	1.45E-06	1.29E-06	1.38E-06	1.59E-06	2.16E-06	1.8E-06	1.79E-06	1.3E-06	
	(Cys	3.91E-07	3.02E-07	2.61E-07	9.64E-08	1.9E-07	1.99E-07	4.865.07	2 965 07	1 55 09	2.045-07	-6.4E-08	-3.6E-08	3.1E-07	1E-07	-1.8E-07	1.56E-07	-5.2E-08	-4.9E-07	
	(Cys	3.78E-07	2.87E-07	1.99E-07	2.31E-07	3.26E-07	2.96E-07	8.2 CI	ick Co	ontinu	e -07	3.06E-10	3.39E-08	2.93E-07	1.69E-07	9.09E-08	2.24E-07	1.59E-08	-5.8E-07	
	(Cys	3.73E-07	3.16E-07	3.01E-07	1.08E-07	1.91E-07	1.79E-07	4.8	- and set		-07	-4.9E-08	-1.1E-08	2.15E-07	1.33E-07	1.02E-07	3.08E-07	1.11E-07	-5.8E-07	
	(Cys	3.66E-07	2.98E-07	2.74E-07	8.76E-08	1.83E-07	1.65E-07	4.76E-07	4.17E-07	-4.5E-08	3.4E-07	-1E-08	2.93E-08	2.35E-07	1.34E-07	3.42E-08	3.28E-07	1.21E-07	-6E-07	
	(Cys	3.29E-07	2.89E-07	2.41E-07	5.43E-08	1.14E-07	8.54E-08	4.54E-07	4.19E-07	-3E-08	1.15E-07	-1.3E-07	-7.1E-08	2.84E-07	1.39E-07	-4.8E-08	3.23E-07	7.08E-08	-6.9E-07	
	(Cys	1.64E-06	1.75E-06	2.04E-06	5.17E-07	8.25E-07	9.95E-07	1.53E-06	1.79E-06	1.99E-06	3.17E-06	2.71E-06	2.56E-06	1.72E-06	1.66E-06	2.19E-06	2.23E-06	2.49E-06	2.63E-06	
*	H Shee	ti 2		2.075.07	2 255 07	F 955 00	4 435 67	1 005 07	F 965 07	F 355 07	1.005.07	1.075.07	11	C 45 40	2.025.07	1 705 07		2 125 07	2 245 07		•
lysis	running																		100% (-)	Ó	

Ho	me Inse	rt Page La	scribing Vis	ualizing Ana	Data Re	view Vie ling Machir	w Add-	Ins XLST	tion Paramet	ric Nonpara	metric Testir	ng for	R + Advance	A XLSTAT	D. I 3DPlot XLS	LG	X ools		
T Recen	+	data *	data • c	lata × da	ata * dati	• learnin	9*	tests *	tests *	tests othesis	• outli	ers *	Teature:			*	*		
		(=	fr	i, copiani ai	in predict				Texturijp	outeris		14231							
A	В	C	D	E	F	G	н	1	1	K	L	м	N	0	P	0	R	S	Т
		-	CuPc	-		MnPc			GO-CuPc-P	DA	-	rGO-CuPc	-PDA		GO-MnPc-	PDA		rGO-MnPc	-PDA
	-	380	480	580	380	480	580	380	480	580	380	480	580	380	480	580	380	480	580
eplicates	s A	1.68E-07	1.43E-07	1.55E-07	1.43E-07	2.45E-07	3.62E-07	2.02E-07	3.76E-07	6.3E-07	5.14E-07	6.93E-07	3.36E-07	5.06E-07	1.73E-07	1.75E-07	8.75E-07	4.57E-07	3.05E-07
	A	2.58E-07	1E-07	1.82E-07	1.79E-07	2.63E-07	4. XI STAT	- Selections				×	5.43E-07	5.26E-07	1.89E-07	1.16E-07	8.32E-07	4.64E-07	3.16E-07
	A	1.25E-07	9.58E-08	1.51E-07	1.2E-07	2.51E-07	5.	serections				~	5.19E-08	5.06E-07	1.47E-07	1.51E-07	5.7E-07	4.61E-07	3.13E-07
	В	2.02E-07	-2E-07	-4.1E-07	2.97E-07	1.78E-07	3.	List of selec	tions:				9.97E-07	3.74E-07	5.95E-07	2.07E-07	9.89E-07	7.00E-07	5.91E-07
	В	2.38E-08	-9.06E-08	3.23E-07	3.84E-07	1.97E-07		Selection	name		Rows	Columns	1.15E-06	3.77E-07	4.23E-07	1.33E-07	1.06E-06	1.02E-06	8.95E-07
	В	2.51E-07	-3.6E-07	7.56E-07	2.17E-07	5.55E-07	3.	Y / Qualit	tative		78	1	8.96E-07	1.02E-07	5.54E-07	3.02E-08	6.23E-07	1.26E-07	1.00E-07
	С	8.27E-07	7.4E-07	5.94E-07	4.69E-07	4.29E-07	2.	x / Quan	utauve		10	10	5.00E-07	2.38E-07	2.42E-07	1.14E-07	2.77E-08	1.14E-07	-5.3E-07
	С	8.01E-07	7.78E-07	5.12E-07	4.81E-07	4.73E-07	2						4.85E-07	3.24E-07	2.4E-07	2.69E-07	2.93E-07	1.2E-07	-5.8E-07
	С	7.44E-07	6.22E-07	6.1E-07	4.26E-07	4.12E-07	2.						4.25E-07	3.1E-07	2.75E-07	1.03E-07	3.7E-07	9.02E-08	-5.5E-07
	P-1	6.12E-07	6.53E-07	4.61E-07	4.36E-07	8.37E-07	9.	Enut	-han alter and		2		9.01E-07	9.71E-07	1.07E-06	1.72E-06	1.22E-06	1.48E-06	1.16E-06
	P-1	8.12E-07	7.85E-07	5.95E-07	3.9E-07	7.52E-07	1.	Do not	snow this mes	sage anymore	e		1.13E-06	1.35E-06	1.41E-06	1.91E-06	1.72E-06	1.99E-06	1.54E-06
	P-1	9.04E-07	7.99E-07	6.34E-07	4.5E-07	8.38E-07	1.		Continue	e Ba	dk	Cancel	1.12E-06	1.51E-06	1.62E-06	2.19E-06	1.8E-06	2.09E-06	1.58E-06
	P-1	9.24E-07	7.94E-07	6.46E-07	3.97E-07	7.56E-07	9.78E-07	9.68E-07	1.2E	1.16E-06	1.45E-06	1.38E-06	1.15E-06	1.37E-06	1.48E-06	1.93E-06	1.88E-06	2.17E-06	1.63E-06
	P-1	9.41E-07	7.4E-07	5.02E-07	4.06E-07	7.84E-07	1.02E-06	9.99E-07	1.29E-D6	1.26E-06	1.44E-06	1.43E-06	1.24E-06	1.34E-06	1.5E-06	2E-06	1.88E-06	2.21E-06	1.65E-06
	P-1	1.36E-06	1.44E-06	1.74E-06	6.65E-07	1.03E-06	1.29E-06	1.32E-06	1.68E-D6	1.74E-06	2.25E-06	2.13E-06	2.06E-06	1.61E-06	1.77E-06	2.25E-06	3.25E-06	3.51E-06	3.61E-06
	P-1	8.57E-07	6.92E-07	5.08E-07	4E-07	7.98E-07	1.02E-06	9.505.07	1 005 bc	4 005 05	E-06	1.45E-06	1.29E-06	1.38E-06	1.59E-06	2.16E-06	1.8E-06	1.79E-06	1.3E-06
	Cys	3.91E-07	3.02E-07	2.61E-07	9.64E-08	1.9E-07	1.99E-07	4.8 CI	ick Co	ntinu	e E-07	-6.4E-08	-3.6E-08	3.1E-07	1E-07	-1.8E-07	1.56E-07	-5.2E-08	-4.9E-07
	Cys	3.78E-07	2.87E-07	1.99E-07	2.31E-07	3.26E-07	2.96E-07	8.2	0102 07		E-07	3.06E-10	3.39E-08	2.93E-07	1.69E-07	9.09E-08	2.24E-07	1.59E-08	-5.8E-07
	Cys	3.73E-07	3.16E-07	3.01E-07	1.08E-07	1.91E-07	1.79E-07	4.86E-07	3.96E-07	-1.5E-08	2.17E-07	-4.9E-08	-1.1E-08	2.15E-07	1.33E-07	1.02E-07	3.08E-07	1.11E-07	-5.8E-07
	Cys	3.66E-07	2.98E-07	2.74E-07	8.76E-08	1.83E-07	1.65E-07	4.76E-07	4.17E-07	-4.5E-08	3.4E-07	-1E-08	2.93E-08	2.35E-07	1.34E-07	3.42E-08	3.28E-07	1.21E-07	-6E-07
	Cys	3.29E-07	2.89E-07	2.41E-07	5.43E-08	1.14E-07	8.54E-08	4.54E-07	4.19E-07	-3E-08	1.15E-07	-1.3E-07	-7.1E-08	2.84E-07	1.39E-07	-4.8E-08	3.23E-07	7.08E-08	-6.9E-07
	Cys	1.64E-06	1.75E-06	2.04E-06	5.17E-07	8.25E-07	9.95E-07	1.53E-06	1.79E-06	1.99E-06	3.17E-06	2.71E-06	2.56E-06	1.72E-06	1.66E-06	2.19E-06	2.23E-06	2.49E-06	2.63E-06
H Sh	eet1 91		50 350 C	2 255 07	F 355 00	1 435 07	1 005 07	F 200 07	F 355 07	1 005 07	1.075.07	111	C 15 10	2 025 07	1 705 07	2.25.00	2 425 07	2 215 07	
is runnin	q																	100%	
																			10-04 AM

Step 6

S48

File	17 - (* Home	∗ v Inse	ert Pa	ige Lavout	Formulas	Data	Review	View	For Add-Ins	sir presenta	tion Unknov	wns - Microse	oft Excel							_	а × Сова	
>	۲	Order	Preparin	Describin	g Visualizing	Analyzing	Modeling	Machine	Correlation/A	Association	Parametric N	? Nonparametric	() Testing for	R	Advanced	3D XLSTAT-3DPlot	LG XLSTAT-LG	X Tools				-
	· ·		data *	data -	data -	data -	data -	learning *	tests	*	tests *	tests *	outliers *	VICTATO	features *	*	*	Ŧ				
LSIAI	Recent		6	U C	iscover, expla	ain and pre	dict	1404000		le	est a hypothe	2515		XLSIAI-R								
-			6	J _x =	SERIES(,DA	1\$C\$599:\$	5N\$599,DA	1\$C\$602:	\$N\$602,2)						-						~	
1	В		C	D	E	F	G	H	1	J	K	L	M	N	0	Р	Q	R	S	Т	U	
-	XLSTA	1 2018.2	.50634 -	Discrimina	ant Analysi	is (DA) - S	tart time:	4/26/2018	8 at 10:04:42	AM		40404 / 70									=	
-	Y/Qu	alitative	: WORKD	OOK = FOr S	sir presenta	ation Unk	nowns.xis	x/Sneet	= Sneet1 / R	ange = Shi	eet1:\$B\$3	SBS81/ /81	ows and 1	column								Ctor
-	A/ Qu		e: work	DOOK = FOI	are accum	ad to bo	oqual	isx / snee	et = sneet1 /	Kange = 5	neettiştş	5.51201/70	rows and	18 colum	ns							Step
	Prior	robabili	itios are	taken into	account	ieu to be	equal															
	Signifi	cance le	vel (%).	S	account				Select ax	es			×									
			(70).						Abscissa	:	73.76 %	-										
			w	PB					EI	-												
		_	_							_		le –		-								
-									Ordinate	s:												
-									F2	-		II 1		-								
	Summ	any stati	ction						1	_				-								
	Summ	ary stati	stics.							Sel	ect	Done	Help	-								
	Varia	hle Cate	goriesre	auencie	%				-													
	A	A	goneire	2	2.564						T											
	-	B		3	3.846																	
		C		3	3.846																	
		Cvs		7	8.974					lick (Soloct	9										
		Cys	100	7	8.974					SHCK	Select											
		Cys	5	7	8.974																	
		GSH		7	8.974																	
		GSH	100	7	8.974																	
		GSH	15	7	8.974																	
		Hcy	s	7	8.974																	
L		Hcy	s 100	7	8.974																-	
4)	H Shee	t1 DA	127										•									
Analys	Shee	t1 DA	<u></u>		01374	1							1				Ш		100	% -		-

6. Reference

- 1. S. Moeno, R.W. M. Krause, E. A. Ermilov, W. Kuzyniak and M. Höpfner, *Photochem. Photobiol. Sci.*, 2014, **13**, 963970
- H. Xu, Q. Yang, F. Li, L. Tang, S. G. B. Jiang, X. Zhao, L. Wangand and C. Fan. *Analyst*, 2013, **138**, 2678–2682.
- 3. Z. Yang, Q. Zheng, H. Qiu, J. LI and J. Yang, New Carbon Mater., 2015, 30, 41-47.
- 4. C. M. Parnell, B. Chhetri, A. Brandt, F. Watanabe, Z. A. Nima, T. K. Mudalige, A. S. Biris and A. Ghosh, *Sci. Rep.*, 2016, **6**, 31415.
- S. Palanisamy, B. Thirumalraj, S.-M. Chen, Y.-. Wang, V. Velusamy and K. Ramaraj, *Sci. Rep.*, 2016, 6, 33599.
- rice.edu, http://www.ruf.rice.edu/~bioslabs/methods/protein/abs280.html, (accessed April 2018).