Single sensor for multiple analytes employing fluorometric differentiation for Cr^{3+} and Al^{3+} in semi-aqueous medium with bioactivity and theoretical aspects

Malay Dolaia, ${ }^{\text {a }}$, Urmila Saha ${ }^{\text {b }}$, Avijit Kumar Das ${ }^{\text {c,d,* }}$ and Gopinatha Suresh Kumar ${ }^{\text {b }}$

Table S1. Crystal data and structure refinement for $\mathrm{H}_{2} \mathrm{SALNN}$.

Parameters	(CCDC No.1814623)
Formula	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$
Formula Weight	300.31
Crystal System	Monoclinic
Space group	P21/n (No.14)
a, b, c [Å]	10.3695(13) 6.0922(8)
	11.4055(15)
$\alpha, \beta, \gamma\left[{ }^{0}\right]$	90 98.355(2) 90
V [$\left.{ }^{3}{ }^{3}\right]$	712.87(16)
Z	2
D (calc) $\left[\mathrm{g} / \mathrm{cm}^{3}\right]$	1.399
$\mu\left(\mathrm{MoK}_{\alpha}\right)[/ \mathrm{mm}]$	0.102
F(000)	316
Crystal Size [mm]	$0.24 \times 0.28 \times 0.55$
Temperature (K)	100
Radiation [λ, \AA A]	0.71073
Theta Min-Max [${ }^{0}$]	2.5, 31.4
Dataset	-15: 15; -8: 8 ; -16: 16
Tot., Uniq.Data, R(int)	3328, 2013, 0.013
Observed data	1834
[$1>2 \sigma(1)$]	
$\mathrm{N}_{\text {ref }}, \mathrm{N}_{\text {par }}$	2013, 105
$R, \mathrm{w} R_{2}, \mathrm{~S}$	0.0405, 0.1172, 1.05

Fig.S1: The ORTEP view of centro-symmetric $\mathrm{H}_{2} \mathrm{SALNN}$ ligand.

Fig.S2: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of ligand- $\mathrm{H}_{2} \mathrm{SALNN}$

Fig.s3: ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra of ligand- $\mathrm{H}_{2} \mathrm{SALNN}$

Fig.S4: ESI-MS spectra of ligand- H_{2} SALNN

Fig.55: Infra-red(IR) spectra of ligand- H_{2} SALNN.

A

Figure S6A. The trend of increase of emission intensity

B
 at the receptor H2SALNN $\left(\mathrm{c}=2 \times 10^{-5} \mathrm{M}\right)$ with $\mathrm{Al}^{3+}\left(\mathrm{c}=2 \times 10^{-4} \mathrm{M}\right)$ at low concentration of Al^{3+}. Inset: The change of emission intensity at high con. of Al^{3+} ion. \mathbf{B}. The initial trend for the change of emission intensity at the receptor H2SALNN $\left(\mathrm{c}=2 \times 10^{-5} \mathrm{M}\right)$ with $\mathrm{Cr}^{3+}\left(\mathrm{c}=2 \times 10^{-4}\right)$.

Calculation of detection limit:

Fig. S7: (a) Changes of emission intensity of $\mathrm{H}_{2} \operatorname{SALNN}\left(c=2 \times 10^{-5} \mathrm{M}\right)$ as a function of $\left[\mathrm{Al}^{3+}\right]$ ($\mathrm{c}=2 \times 10^{-4} \mathrm{M}$) at 490 nm . (b) Changes of emission intensity of $\mathrm{H}_{2} \operatorname{SALNN}\left(c=2 \times 10^{-5} \mathrm{M}\right)$ as a function of $\left[\mathrm{Cr}^{3+}\right]\left(c=2 \times 10^{-4} \mathrm{M}\right)$ at 427 nm .

The detection limit (DL) of $\mathrm{H}_{2} \mathrm{SALNN}$ towards Al^{3+} and Cr^{3+} in emission spectra was determined from the following equation:

DL $=K^{*} \mathrm{Sb}_{1} / \mathrm{S}$
Where $\mathrm{K}=2$ or 3 (we take 2 in this case); Sb_{1} is the standard deviation of the blank solution; S is the slope of the calibration curve.

From the graph Fig.S9(a), we get slope $=4239.20$, and Sb_{1} value is 9430.42 .

Thus using the formula we have detected the fluorescence of H_{2} SALNN using mininum $4.3 \mu \mathrm{M}$ of Al^{3+} solution.

From the graph Fig.S9(b), we get slope $=46542.44$, and Sb 1 value is 71412.33 .
Thus using the formula we have detected the fluorescence of $\mathrm{H}_{2} \mathrm{SALNN}$ using mininum 3.40 $\mu \mathrm{M} \mathrm{Cr}^{3+}$.

Determination of fluorescence quantum yield:

Here, the quantum yield φ was measured by using the following equation,

$$
\varphi_{\mathrm{x}}=\varphi_{\mathrm{s}}\left(\mathrm{~F}_{\mathrm{x}} / \mathrm{F}_{\mathrm{s}}\right)\left(\mathrm{A}_{\mathrm{s}} / \mathrm{A}_{\mathrm{x}}\right)\left(\mathrm{n}_{\mathrm{x}}^{2} / \mathrm{n}_{\mathrm{s}}^{2}\right)
$$

Where,
$X \& S$ indicate the unknown and standard solution respectively, $\varphi=$ quantum yield,
$\mathrm{F}=$ area under the emission curve, $\mathrm{A}=$ absorbance at the excitation wave length,
$\mathrm{n}=$ index of refraction of the solvent. Here φ measurements were performed using anthracene in ethanol as standard $[\varphi=0.27]$ (error $\sim 10 \%$)

Association constant determination:

The binding constant value of metal ions Al^{3+} and Cr^{3+} with the $\mathrm{H}_{2} \mathrm{SALNN}$ has been determined from the emission intensity data following the modified Benesi-Hildebrand equation, $1 / \Delta \mathrm{I}=$ $1 / \Delta \mathrm{I} \max +(1 / \mathrm{K}[\mathrm{C}])(1 / \Delta \mathrm{I} \max)$. Here $\Delta \mathrm{I}=\mathrm{I}$-Imin and $\Delta \mathrm{I} \max =\mathrm{Imax}-I m i n$, where Imin, I , and Imax are the emission intensities of sensor considered in the absence of guest, at an intermediate concentration and at a concentration of complete saturation of guest where K is the binding constant and $[\mathrm{C}]$ is the guest concentration respectively. From the plot of (Imax$\operatorname{Imin}) /(\mathrm{I}-\mathrm{Imin})$ against $[\mathrm{C}]^{-1}$ for sensor, the value of K has been determined from the slope. The association constant $\left(K_{a}\right)$ as determined by fluorescence titration method for \mathbf{H}_{2} SALNN with Al^{3+} is found to be $1.4 \times 10^{4} \mathrm{M}^{-1}$ (error $<10 \%$) and Cr^{3+} towards $\mathrm{H}_{2} \mathrm{SALNN}$ is $1 \times 10^{5} \mathrm{M}^{-1}$.

Fig. S8: (a) Benesi-Hildebrand plot from fluorescence titration data of $\mathbf{H}_{2} \mathbf{S A L N N}(20 \mu \mathrm{M})$ with Al^{3+}. (b) Benesi-Hildebrand plot from fluorescence titration data of $\mathbf{H}_{2} \operatorname{SALNN}(20 \mu \mathrm{M})$ with Cr^{3+}.

Table S2: The comparison of $\mathrm{H}_{2} \mathrm{SALNN}$ with other hydrazine ligands with the substitution on the basis of different metal ion binding.

Entry	Ligand structures	Binding metal ions	References
1.		Ti	(a)
2.		$\begin{aligned} & \mathrm{Fe}^{3+} \\ & \mathrm{Cu}^{2+}, \mathrm{Al}^{3+} \end{aligned}$	(b) (c)
3.		Zn^{2+}	(d)
4.		$\begin{array}{\|l\|l} \hline \mathrm{Zn}^{2+} \\ \mathrm{Cu}^{2+} \end{array}$	$\begin{aligned} & \hline \text { (e) } \\ & \text { (f) } \end{aligned}$

(a) (a)

Fig.S9: ESI-MS spectra of complex-1

Fig.S10: Infra-red(IR) spectra of complex-1

Fig.S11: ESI-MS spectra of complex-2

Fig.S12: Infra-red(IR) spectra of complex-2

Fig.s13: Compared infra-red(IR) spectra of $\mathrm{H}_{2} \mathrm{SALNN}$, complex-1 and complex-2.

Fig.S14: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of 0.5 equivalent addition of Al^{3+} on $\mathrm{H}_{2} \mathrm{SALNN}$.

Fig.S15: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of 1 equivalent addition of Al^{3+} on H_{2} SALNN.

Table S3. Hydrogen bonds for H_{2} SALNN $\left[\AA\right.$ and $^{\circ}$].

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D \ldots A)$	$<(D H A)$
$C(8)-H(8 A) \ldots O(2) \# 2$	0.98	2.49	$3.2540(12)$	134.4
$C(8)-H(8 C) \ldots O(1) \# 3$	0.98	2.59	$3.3488(12)$	134.0
$O(1)-H(1) \ldots N(1)$	$0.883(17)$	$1.855(17)$	$2.6475(10)$	$148.3(16)$

Symmetry transformations used to generate equivalent atoms:
\#1 -x,-y+1,-z+1 \#2 -x+3/2, y-1/2,-z+1/2 \#3-x+1,-y,-z+1

References:

(a) H. C. Tseng, H. Y. Chen, Y. T. Huang, W. Y. Lu, Y. L. Chang, M. Y. Chiang, Y. C. Lai, and H. Y. Chen, Inorg. Chem., 2016, 55, 1642-1650.
(b) M. Hong, G. Dong, D. Chun-ying, L. Yu-ting and M. Qing-jin, J. Chem. Soc., Dalton Trans., 2002, 3422-3424.
(c) C. Gou, S. H. Qin, H. Q. Wu, Y. Wang, J. Luo, X. Y. Liu, Inorganic Chemistry Communications 2011, 14, 16221625.
(d) M. G. Mohamed, R. C. Lin, J. H. Tu, F. H. Lu, J. L. Hong, K. U. Jeong, C. F. Wangd and S. W. Kuo, RSC Adv., 2015, 5, 65635-65645.
(e) D. X. Xie, Z. J. Ran, Z. Jin, X. B. Zhang, D. L. An, Dyes and Pigments 2013, 96, 495-499.
(f) J. Huo, K. Liu, X. Zhao, X. Zhang, Y. Wang, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, 117, 789-792.
(g) K. Tiwari, S. Kumar, V. Kumar, J. Kaur, S. Arora, R. K. Mahajan, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, 191, 16-26.
(h) T. Sun, Q. Niu, T. Li, Z. Guo, H. Liu, Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 2018, 188, 411-417.
(i) A. Ghosh, A. Sengupta, A. Chattopadhyay and D. Das, RSC Adv., 2015, 5, 24194-24199
(j) Z. Kowser, U. Rayhan, S. Rahman, P. E. Georghiou, T. Yamato, Tetrahedron 2017, 73, 5418-5424.
(k) Y. Suenaga, and C. G. Pierpont, Inorganic Chemistry, Vol. 44, No. 18, 2005.

