Single sensor for multiple analytes employing fluorometric differentiation for Cr³⁺ and Al³⁺ in semi-aqueous medium with bioactivity and theoretical aspects

Malay Dolai^{a,*}, Urmila Saha^b, Avijit Kumar Das^{c,d,*} and Gopinatha Suresh Kumar^b

Parameters (CCDC No.1814623) Formula $C_{16} \ H_{16} \ N_2 \ O_4$ 300.31 Formula Weight Crystal System Monoclinic Space group P21/n (No. 14) 10.3695(13) 6.0922(8) a, b, c [Å] 11.4055(15) α, β, γ [°] 90 98.355(2) 90 V [ų] 712.87(16) Ζ 2 D(calc) [g/cm³] 1.399 μ(MoK_α) [/mm] 0.102 F(000) 316 Crystal Size [mm] 0.24 x 0.28 x 0.55 Temperature (K) 100 0.71073 Radiation $[\lambda, Å]$ Theta Min-Max [°] 2.5, 31.4 Dataset -15: 15; -8: 8; -16: 16 3328, 2013, 0.013 Tot., Uniq.Data, R(int) Observed data 1834 $[I > 2\sigma(I)]$ 2013, 105 N_{ref}, N_{par} 0.0405, 0.1172, 1.05 R, WR_2, S

Table S1. Crystal data and structure refinement for H₂SALNN.

Fig.S1: The ORTEP view of centro-symmetric H₂SALNN ligand.

Fig.S4: ESI-MS spectra of ligand- H_2 SALNN

Fig.S5: Infra-red(IR) spectra of ligand- H₂SALNN.

at the receptor H2SALNN (c = $2x10^{-5}$ M) with Al³⁺ (c = $2x10^{-4}$ M) at low concentration of Al³⁺. Inset: The change of emission intensity at high con. of Al³⁺ ion. **B**. The initial trend for the change of emission intensity at the receptor H2SALNN (c = $2x10^{-5}$ M) with Cr³⁺ (c = $2x10^{-4}$).

Calculation of detection limit:

Fig. S7: (a) Changes of emission intensity of H_2SALNN ($c = 2 \times 10^{-5}M$) as a function of [Al³⁺] ($c = 2 \times 10^{-4}M$) at 490 nm. (b) Changes of emission intensity of H_2SALNN ($c = 2 \times 10^{-5}M$) as a function of [Cr³⁺] ($c = 2 \times 10^{-4}M$) at 427 nm.

The detection limit (DL) of H_2SALNN towards Al^{3+} and Cr^{3+} in emission spectra was determined from the following equation:

$DL = K* Sb_1/S$

Where K = 2 or 3 (we take 2 in this case); Sb₁ is the standard deviation of the blank solution; S is the slope of the calibration curve. From the graph Fig.S9(a), we get slope = 4239.20, and Sb₁ value is 9430.42.

Thus using the formula we have detected the fluorescence of H_2SALNN using mininum 4.3 μ M of Al³⁺ solution.

From the graph Fig.S9(b), we get slope = 46542.44, and Sb1 value is 71412.33.

Thus using the formula we have detected the fluorescence of H_2SALNN using mininum 3.40 μ M Cr³⁺.

Determination of fluorescence quantum yield:

Here, the quantum yield φ was measured by using the following equation,

$$\varphi_{\rm x} = \varphi_{\rm s} (F_{\rm x} / F_{\rm s}) (A_{\rm s} / A_{\rm x}) (n_{\rm x}^2 / n_{\rm s}^2)$$

Where,

X & S indicate the unknown and standard solution respectively, $\varphi =$ quantum yield,

F = area under the emission curve, A = absorbance at the excitation wave length,

n = index of refraction of the solvent. Here φ measurements were performed using anthracene in ethanol as standard [$\varphi = 0.27$] (error ~ 10%)

Association constant determination:

The binding constant value of metal ions Al^{3+} and Cr^{3+} with the H₂SALNN has been determined from the emission intensity data following the modified Benesi–Hildebrand equation, $1/\Delta I = 1/\Delta I \max + (1/K[C])(1/\Delta I \max)$. Here $\Delta I = I$ -Imin and $\Delta I \max = I$ max-Imin, where Imin, I, and Imax are the emission intensities of sensor considered in the absence of guest , at an intermediate concentration and at a concentration of complete saturation of guest where K is the binding constant and [C] is the guest concentration respectively. From the plot of (Imax-Imin)/(I-Imin) against [C]⁻¹ for sensor, the value of K has been determined from the slope. The association constant (K_a) as determined by fluorescence titration method for H₂SALNN with Al^{3+} is found to be 1.4 x 10⁴M⁻¹ (error < 10%) and Cr³⁺ towards H₂SALNN is 1x10⁵M⁻¹.

Fig. S8: (a) Benesi–Hildebrand plot from fluorescence titration data of H_2SALNN (20µM) with Al³⁺. (b) Benesi–Hildebrand plot from fluorescence titration data of H_2SALNN (20µM) with Cr³⁺.

Table S2: The comparison of H ₂ SALNN with other hydrazine ligands with the substitution on the basis o	٥f
different metal ion binding.	

Entry	Ligand structures	Binding metal	References
		ions	
1.		Ti	(a)
2.	HO OH	Fe ³⁺ Cu ²⁺ , Al ³⁺	(b) (c)
3.	HO OH N	Zn ²⁺	(d)
4.	HO N N OH	Zn ²⁺ Cu ²⁺	(e) (f)

Fig.S10: Infra-red(IR) spectra of complex-1

Fig.S12: Infra-red(IR) spectra of complex-2

Fig.S13: Compared infra-red(IR) spectra of H₂SALNN, complex-1 and complex-2.

Fig.S14: ¹H-NMR spectra of 0.5 equivalent addition of AI^{3+} on H_2SALNN .

Fig.S15: ¹H-NMR spectra of 1 equivalent addition of AI^{3+} on H_2SALNN .

Table S3. Hydrogen bonds for H₂SALNN [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(8)-H(8A)O(2)#2	0.98	2.49	3.2540(12)	134.4
C(8)-H(8C)O(1)#3	0.98	2.59	3.3488(12)	134.0
O(1)-H(1)N(1)	0.883(17)	1.855(17)	2.6475(10)	148.3(16)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z+1 #2 -x+3/2, y-1/2,-z+1/2 #3 -x+1,-y,-z+1

References:

(a) H. C. Tseng, H. Y. Chen, Y. T. Huang, W. Y. Lu, Y. L. Chang, M. Y. Chiang, Y. C. Lai, and H. Y. Chen, *Inorg. Chem.*, 2016, **55**, 1642–1650.

(b) M. Hong, G. Dong, D. Chun-ying, L. Yu-ting and M. Qing-jin, J. Chem. Soc., Dalton Trans., 2002, 3422–3424.

(c) C. Gou, S. H. Qin, H. Q. Wu, Y. Wang, J. Luo, X. Y. Liu, *Inorganic Chemistry Communications* 2011, **14**, 1622–1625.

(d) M. G. Mohamed, R. C. Lin, J. H. Tu, F. H. Lu, J. L. Hong, K. U. Jeong, C. F. Wangd and S. W. Kuo, *RSC Adv.*, 2015, **5**, 65635–65645.

(e) D. X. Xie, Z. J. Ran, Z. Jin, X. B. Zhang, D. L. An, *Dyes and Pigments* 2013, 96, 495-499.

(f) J. Huo, K. Liu, X. Zhao, X. Zhang , Y. Wang, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014, **117**, 789–792.

(g) K. Tiwari, S. Kumar, V. Kumar, J. Kaur, S. Arora, R. K. Mahajan, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018, **191**, 16–26.

(h) T. Sun, Q. Niu, T. Li, Z. Guo, H. Liu, Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy 2018, **188**, 411-417.

(i) A. Ghosh, A. Sengupta, A. Chattopadhyay and D. Das, RSC Adv., 2015, 5, 24194-24199

(j) Z. Kowser, U. Rayhan, S. Rahman, P. E. Georghiou, T. Yamato, Tetrahedron 2017, 73, 5418-5424.

(k) Y. Suenaga, and C. G. Pierpont, Inorganic Chemistry, Vol. 44, No. 18, 2005.