Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2018

Fast simultaneous quantitation of valsartan and amlodipine besylate using Ecofriendly micellar HPLC-UV method: application to spiked human plasma and content uniformity testing for amlodipine

Fawzia A. Ibrahim, Amina M. El-Brashy, Mohamed I. El-Awady* and Nora A. Abdallah

Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.

Supplementary Information

- **Table S1:** Comparison between the reported HPLC methods and the proposed method.
- Table S2: Analytical eco-scale for assessment of greenness of the proposed method.
- Scheme S1: Greenness of solvents commonly used in analytical chemistry, based on solvent selection guides.
- Details about Content Uniformity testing.

Tel.: +20502246253, Fax: +20502363641, E-mail: mohamedelawady2@yahoo.com

^{*}Corresponding author.

Table S1: Comparison between the reported HPLC methods and the proposed method.

Reference	Range	Mobile Phase	Column	Detection	Run time	Application
4	VAL: 112- 208 μg/mL	Methanol: Water	C-18	UV	6.0 min	tablets
	AML: 07- 13 μg/mL	(62:38), pH at 3.0	Column	detection		
				at 230		
				nm		
5	VAL: 160 - 480 μg/ml	dihydrogen phosphate	C-18	UV	2.0 min.	Tablets and
	AML: 10 - 30 μg/ml	buffer : acetonitrile	Column	detection		stability
		(55:45), pH 3.2		237 nm		study
6	VAL: 0.10 -20 μg/mL	gradient elution with	C-18	on-line	15.0 min	Tables and
	AML: 0.01- 0.80	aqueous 0.02% sodium	Column	Fluoresce		rat plasma
	μg/mL	hexane sulfonate-		nce		
		glacial acetic acid		detection		
		(500:1,v/v) : acetonitrile				
7	VAL: 1–100 ng/mL	phosphate	Phenyl	on-line	15.0 min	plasma
	AML:10-1000 ng/mL	buffer:acetonitrile:meth	Column	fluoresce		
		-anol (60:30:10), pH		nce		
		4.0 ± 0.1		detection		
8	VAL: 32-128 μg/ml	water, acetonitrile and	C-18	UV	6.0 min	tablets
	AML: 19.6-78.4 μg/ml	glacial acetic acid	Column	detection		
		(300:700:1)		at 220		
				nm		
9	VAL: 5-50 μg/ml	acetonitrile-phosphate	C-18	UV	5.0 min.	Tablets and
	AML: 2-20 μg/ml	buffer (50/50)	Column	detection		plasma
				at 254		
				nm.		
Proposed	VAL: 5-300 μg/ml	0.16 M sodium dodecyl	Monolithic	UV	4.3 min	Tablets,
method	AML: 5-200 μg/ml	sulphate (SDS), 0.3%	18 Column	detection		plasma and
		triethylamine (TEA),		at 240		content
		15% n-propanol, pH 2.5		nm.		uniformity
						testing for
						AML

Table S2: Analytical eco-scale for assessment of greenness of the proposed method

Items of the method	Value	Penalty points		
Reagent				
n-propanol	10–100 mL	4		
TEA	1–10 mL	2		
SDS				
o-phosphoric acid	1–10 mL	2		
Total penalty points (mu	ultiply the reagent amount and	12		
reagent hazard)				
Instruments				
Energy	<1.5 KWH per sample	1		
Occupational hazard	Emission of vapours to air	1		
Waste	1–10 mL	3		
Heater	No heating	0		
Conditioning and washing time	Normal	0		
Total penalty points (sur	m of instrument points)	5		
Total penalty points		17		
Analytical Eco- Scale total score	100 -17	83		

Water								
Methanol	Ethanol	Propanol	Butanol					
Ethyl acetate Methyl acetate	Acetone		Isopropanol					
Methyl acetate	Acetic acid		isopropunor					
Cyclohexane	Heptane	Xylenes	Limonene					
Acetonitrile	Pentane	Toluene	Pinene					
Methyl tert butyl ether								
Carbon disulphide Benzene Chlorinated solvents								

Scheme S1: Greenness of solvents commonly used in analytical chemistry based on solvent selection guides

[M. Tobiszewski, Analytical Methods, 2016, 8, 2993-2999].

Content Uniformity Test

Pharmaceutical products prior to their approval for market authorization are evaluated and tested according to their quality test specifications. Tests, described in the quality test specifications contain physical tests (appearance, average mass, etc.), chemical tests (assay, purity, etc.), and pharmaceutical tests (dissolution, content uniformity) [B. Banfai; K. Ganzler; S. Kemeny; *Content uniformity and assay requirements in current regulations.* J. Chromatogr. A 1156 (2007) 206-212]. Assay and content uniformity tests are two major aspects of drug quality assessment. Most quality attributes are regulated in the pharmacopoeias. The content uniformity tests are used for proving the uniform distribution of the active content in a production batch. It is performed by measuring the active content of individual dosage units. The British Pharmacopeia as well as the United States Pharmacopeia uses the same procedure for content uniformity testing.

The acceptance value is calculated from the following formula:

$$AV = |M-X| + KS$$

Where:

AV is the acceptance value, **M** is a reference value that equals either;

98.5% if X < 98.5% or, X; if X is between 98.5–101.5% or, 101.5% if X > 101.5% where X is the mean of individual contents.

k is the acceptability constant (tolerance factor); it equals either; 2.4 if n=10 or 2.0 if n=30.
S is the sample standard deviation.

L1 is the maximum allowed acceptance value; it equals 15.0 unless otherwise specified in the individual monograph of the drug.

L2 is the maximum allowed range for deviation of each dosage unit tested from the calculated value of **M**; it equals 25.0 unless otherwise specified in the individual monograph.

Thus, the acceptance value (\mathbf{AV}) is calculated as the sum of two components, namely the difference of the observed mean and the reference value $|M - \overline{X}|$ and the width of the tolerance interval (\mathbf{KS}) . Thus, the decision on accepting/rejecting a batch depends not only on the width of this interval but also on the shift of the mean from the nominal value.

Due to the high sensitivity of the proposed method and its ability to rapidly analyse a single tablet extract with sufficient accuracy, the method is ideally suited for content uniformity testing. The steps of the test were adopted according to the USP procedure. The acceptance value (AV) was calculated and it was found to be smaller than the maximum allowed acceptance value (L1). The results demonstrated excellent drug uniformity for AML.