Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2018

Pt catalyzed formation of Ni@Pt/reduced graphene oxide nanocomposite: preparation and electrochemical sensing application for glucose detection

Lian Ma^a, Xiaoyan Wang^a, Qiaran Zhang^a, Xinli Tong^a, Yue Zhang^{a*} and Zhuang Li^b

Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion,

School of Chemistry & Chemical Engineering, Tianjin University of Technology,

Tianjin 300384, PR China

 $^{{}^*\} Corresponding\ author.\ E-mail\ address:\ yuezhang@tjut.edu.cn$

Supporting Information

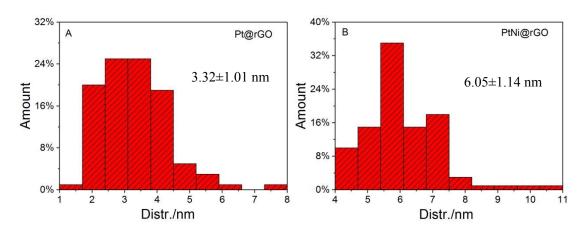
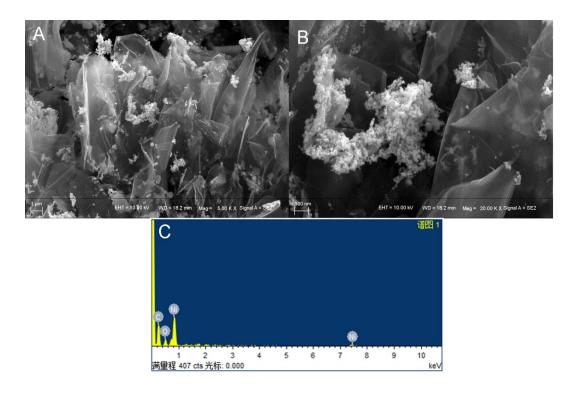
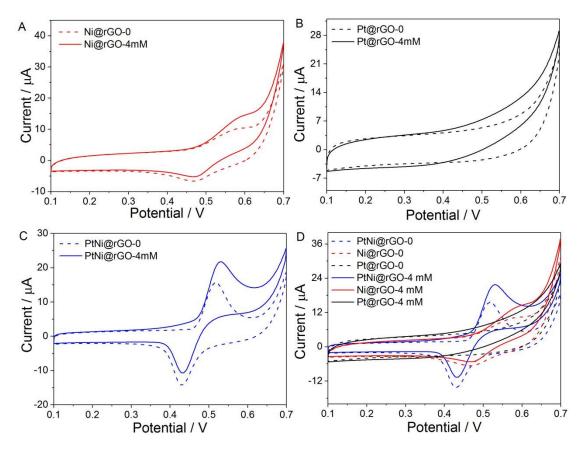




Fig. S1. The diameter analysis of Pt@rGO (A) and PtNi@rGO (B).

Fig. S2 SEM images (A, B) and EDS analysis (C) of Ni/rGO without Pt-catalyzed reduction.

Fig. S3 Comparison of three electrodes in absence (dash line) and presence (solid line) of 4.0 mM glucose in 0.1 M NaOH by CV. Scan rate: 50 mV s⁻¹.

Table S1 Determination of glucose in human serum by our developed glucose sensor.

Sample	Determined by a blood glucose meter (mM)	Determined by our sensor (mM)	RSD (%)
1	4.23	4.16	28.14
2	8.23	8.40	23.90